Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074843698> ?p ?o ?g. }
- W2074843698 endingPage "96" @default.
- W2074843698 startingPage "84" @default.
- W2074843698 abstract "Within the subducting oceanic crust, carbonated eclogitic pelites are the lithology with the lowest melting temperature at > 5 GPa, i.e. at depths beyond major subarc dehydration. 200–400 °C below the oceanic mantle geotherm, carbonated pelites generate alkali-rich Ca-carbonate melts that constitute efficient metasomatic agents of the mantle. Partition coefficients between residual minerals and such melts were experimentally determined at 8, 13, and 22 GPa at 1100–1500 °C. Compared to previous studies, clinopyroxenes have higher jadeite contents (57–82 mol%) resulting in a larger compatibility for LILE. In garnet, the compatibility of REE increases from incompatible LREE (DLa ~ 0.005 at 8–22 GPa) to slightly compatible Lu (DLu = 0.96 to 3.5 at 8–22 GPa), DHFSE's increase with pressure from slightly incompatible at 8 GPa to highly compatible at 22 GPa, always with DHf > DZr. K-hollandite/carbonate melt partition coefficients at 13 GPa are all < 0.3 except for K itself. At 22 GPa, Rb, Sr, Ba, and Pb also become compatible in K-hollandite. Also at 22 GPa, FeTi-perovskites appear and have high D-values for HFSEs (DHFSE 28–88), similar to other Ti-rich minerals. In the CAS phase, also occurring at 22 GPa, Ti, Sr, La to Gd, and Pb, Th and U are compatible (DPb > DTh > DU > 1.7 with a DPb/DU of 12 to 26) leading to a strong fractionation of these elements during melting just above the 660 km discontinuity. Calculated bulk residue/carbonate melt partition coefficients increase with pressure for almost all elements. At 22 GPa, i.e. for carbonated sediment melting in the transition zone, element fractionation strongly effects the Pb isotopic evolution. Carbonate melt trace element compositions normalized to primitive mantle show strong enrichments in incompatible elements including LILE and LREE and relative negative anomalies for Ti at 8 and 13 GPa and for Hf, Zr and Ti at 22 GPa at which pressure absolute values are close to mantle concentrations. Primitive mantle normalized patterns for 8 GPa carbonate melts are similar to ultrapotassic rocks and many lamproites on one hand confirming the involvement of a sedimentary component in the source region of these rocks, on the other hand defining this component as a carbonated sediment melt. The melting of mantle domains re-enriched by ~ 0.4 wt.% of our 8–13 GPa carbonate melts produces the typical trace element signature observed in the group II kimberlites. Finally, the Pb, Nd, and Sr isotopic evolution of mantle domains contaminated by ≤ 1 wt.% carbonate melt derived from carbonated pelites yields reservoirs which cover most of the compositions identified as EM I and II flavors in OIBs." @default.
- W2074843698 created "2016-06-24" @default.
- W2074843698 creator A5032290064 @default.
- W2074843698 creator A5034219005 @default.
- W2074843698 creator A5056938519 @default.
- W2074843698 date "2012-04-01" @default.
- W2074843698 modified "2023-10-17" @default.
- W2074843698 title "Element partitioning during carbonated pelite melting at 8, 13 and 22GPa and the sediment signature in the EM mantle components" @default.
- W2074843698 cites W1534749586 @default.
- W2074843698 cites W1629458192 @default.
- W2074843698 cites W1966278336 @default.
- W2074843698 cites W1966964657 @default.
- W2074843698 cites W1968785366 @default.
- W2074843698 cites W1968814009 @default.
- W2074843698 cites W1969859799 @default.
- W2074843698 cites W1973591418 @default.
- W2074843698 cites W1974731988 @default.
- W2074843698 cites W1974872027 @default.
- W2074843698 cites W1975657796 @default.
- W2074843698 cites W1977358350 @default.
- W2074843698 cites W1979335327 @default.
- W2074843698 cites W1979708446 @default.
- W2074843698 cites W1980248175 @default.
- W2074843698 cites W1983529332 @default.
- W2074843698 cites W1988488782 @default.
- W2074843698 cites W1990361243 @default.
- W2074843698 cites W1991363467 @default.
- W2074843698 cites W1995878469 @default.
- W2074843698 cites W1998707404 @default.
- W2074843698 cites W2002042565 @default.
- W2074843698 cites W2006273931 @default.
- W2074843698 cites W2006493367 @default.
- W2074843698 cites W2009730612 @default.
- W2074843698 cites W2010312211 @default.
- W2074843698 cites W2011860245 @default.
- W2074843698 cites W2022147003 @default.
- W2074843698 cites W2023340053 @default.
- W2074843698 cites W2026764894 @default.
- W2074843698 cites W2026841406 @default.
- W2074843698 cites W2028824915 @default.
- W2074843698 cites W2030114314 @default.
- W2074843698 cites W2034632918 @default.
- W2074843698 cites W2035283420 @default.
- W2074843698 cites W2036918177 @default.
- W2074843698 cites W2038707767 @default.
- W2074843698 cites W2043668394 @default.
- W2074843698 cites W2049366175 @default.
- W2074843698 cites W2052159407 @default.
- W2074843698 cites W2056122128 @default.
- W2074843698 cites W2060240557 @default.
- W2074843698 cites W2061306850 @default.
- W2074843698 cites W2064223528 @default.
- W2074843698 cites W2065261863 @default.
- W2074843698 cites W2068506080 @default.
- W2074843698 cites W2068946023 @default.
- W2074843698 cites W2070491486 @default.
- W2074843698 cites W2070961915 @default.
- W2074843698 cites W2071925770 @default.
- W2074843698 cites W2072062807 @default.
- W2074843698 cites W2079110505 @default.
- W2074843698 cites W2082461046 @default.
- W2074843698 cites W2086210906 @default.
- W2074843698 cites W2086227631 @default.
- W2074843698 cites W2089251110 @default.
- W2074843698 cites W2108394962 @default.
- W2074843698 cites W2110725824 @default.
- W2074843698 cites W2119438235 @default.
- W2074843698 cites W2124162014 @default.
- W2074843698 cites W2125184934 @default.
- W2074843698 cites W2136551307 @default.
- W2074843698 cites W2139279112 @default.
- W2074843698 cites W2139551431 @default.
- W2074843698 cites W2139737137 @default.
- W2074843698 cites W2145585934 @default.
- W2074843698 cites W2147592251 @default.
- W2074843698 cites W2149743365 @default.
- W2074843698 cites W2152116821 @default.
- W2074843698 cites W2152550713 @default.
- W2074843698 cites W2153456200 @default.
- W2074843698 cites W2161939913 @default.
- W2074843698 cites W2166978438 @default.
- W2074843698 cites W2171968174 @default.
- W2074843698 cites W2325206992 @default.
- W2074843698 cites W4250631592 @default.
- W2074843698 doi "https://doi.org/10.1016/j.epsl.2012.01.023" @default.
- W2074843698 hasPublicationYear "2012" @default.
- W2074843698 type Work @default.
- W2074843698 sameAs 2074843698 @default.
- W2074843698 citedByCount "48" @default.
- W2074843698 countsByYear W20748436982013 @default.
- W2074843698 countsByYear W20748436982014 @default.
- W2074843698 countsByYear W20748436982015 @default.
- W2074843698 countsByYear W20748436982016 @default.
- W2074843698 countsByYear W20748436982017 @default.
- W2074843698 countsByYear W20748436982018 @default.
- W2074843698 countsByYear W20748436982019 @default.
- W2074843698 countsByYear W20748436982020 @default.
- W2074843698 countsByYear W20748436982021 @default.