Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074894599> ?p ?o ?g. }
- W2074894599 endingPage "638" @default.
- W2074894599 startingPage "630" @default.
- W2074894599 abstract "The aim of this study was to compare genetic gain for a traditional aquaculture sib breeding scheme with breeding values based on phenotypic data (TBLUP) with a breeding scheme with genome-wide (GW) breeding values. Both breeding schemes were closed nuclei with discrete generations modeled by stochastic simulation. Optimum contribution selection was applied to restrict pedigree-based inbreeding to either 0.5 or 1% per generation. There were 1,000 selection candidates and a sib test group of either 4,000 or 8,000 fish. The number of selected dams and sires to create full sib families in each generation was determined from the optimum contribution selection method. True breeding values for a trait were simulated by summing the number of each QTL allele and the true effect of each of the 1,000 simulated QTL. Breeding values in TBLUP were predicted from phenotypic and pedigree information, whereas genomic breeding values were computed from genetic markers whose effects were estimated using a genomic BLUP model. In generation 5, genetic gain was 70 and 74% greater for the GW scheme than for the TBLUP scheme for inbreeding rates of 0.5 and 1%. The reduction in genetic variance was, however, greater for the GW scheme than for the TBLUP scheme due to fixation of some QTL. As expected, accuracy of selection increased with increasing heritability (e.g., from 0.77 with a heritability of 0.2 to 0.87 with a heritability of 0.6 for GW, and from 0.53 and 0.58 for TBLUP in generation 5 with sib information only). When the trait was measured on the selection candidate compared with only on sibs and the heritability was 0.4, accuracy increased from 0.55 to 0.69 for TBLUP and from 0.83 to 0.86 for GW. The number of selected sires to get the desired rate of inbreeding was in general less in GW than in TBLUP and was 33 for GW and 83 for TBLUP (rate of inbreeding 1% and heritability 0.4). With truncation selection, genetic gain for the scheme with GW breeding values was nearly twice as large as a scheme with traditional BLUP breeding values. The results indicate that the benefits of applying GW breeding values compared with TBLUP are reduced when contributions are optimized. In conclusion, genetic gain in aquaculture breeding schemes with optimized contributions can increase by as much as 81% by applying genome-wide breeding values compared with traditional BLUP breeding values." @default.
- W2074894599 created "2016-06-24" @default.
- W2074894599 creator A5025798745 @default.
- W2074894599 creator A5048591880 @default.
- W2074894599 creator A5067510810 @default.
- W2074894599 date "2011-03-01" @default.
- W2074894599 modified "2023-10-13" @default.
- W2074894599 title "Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes" @default.
- W2074894599 cites W1513158650 @default.
- W2074894599 cites W1525668218 @default.
- W2074894599 cites W1928998639 @default.
- W2074894599 cites W1977335328 @default.
- W2074894599 cites W1999398820 @default.
- W2074894599 cites W2031830782 @default.
- W2074894599 cites W2068922936 @default.
- W2074894599 cites W2076168570 @default.
- W2074894599 cites W2077668635 @default.
- W2074894599 cites W2078206793 @default.
- W2074894599 cites W2089534158 @default.
- W2074894599 cites W2117354404 @default.
- W2074894599 cites W2125215560 @default.
- W2074894599 cites W2145647386 @default.
- W2074894599 cites W2147295520 @default.
- W2074894599 cites W2147476214 @default.
- W2074894599 cites W2160228159 @default.
- W2074894599 cites W2162533806 @default.
- W2074894599 cites W2166975941 @default.
- W2074894599 cites W2406881964 @default.
- W2074894599 cites W268741170 @default.
- W2074894599 doi "https://doi.org/10.2527/jas.2009-2731" @default.
- W2074894599 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21036937" @default.
- W2074894599 hasPublicationYear "2011" @default.
- W2074894599 type Work @default.
- W2074894599 sameAs 2074894599 @default.
- W2074894599 citedByCount "36" @default.
- W2074894599 countsByYear W20748945992012 @default.
- W2074894599 countsByYear W20748945992013 @default.
- W2074894599 countsByYear W20748945992014 @default.
- W2074894599 countsByYear W20748945992015 @default.
- W2074894599 countsByYear W20748945992016 @default.
- W2074894599 countsByYear W20748945992017 @default.
- W2074894599 countsByYear W20748945992018 @default.
- W2074894599 countsByYear W20748945992019 @default.
- W2074894599 countsByYear W20748945992020 @default.
- W2074894599 countsByYear W20748945992021 @default.
- W2074894599 countsByYear W20748945992022 @default.
- W2074894599 countsByYear W20748945992023 @default.
- W2074894599 crossrefType "journal-article" @default.
- W2074894599 hasAuthorship W2074894599A5025798745 @default.
- W2074894599 hasAuthorship W2074894599A5048591880 @default.
- W2074894599 hasAuthorship W2074894599A5067510810 @default.
- W2074894599 hasConcept C103545067 @default.
- W2074894599 hasConcept C104317684 @default.
- W2074894599 hasConcept C104959735 @default.
- W2074894599 hasConcept C105795698 @default.
- W2074894599 hasConcept C106934330 @default.
- W2074894599 hasConcept C119857082 @default.
- W2074894599 hasConcept C12558332 @default.
- W2074894599 hasConcept C144024400 @default.
- W2074894599 hasConcept C149923435 @default.
- W2074894599 hasConcept C161890455 @default.
- W2074894599 hasConcept C197321923 @default.
- W2074894599 hasConcept C199360897 @default.
- W2074894599 hasConcept C2016182 @default.
- W2074894599 hasConcept C2777782036 @default.
- W2074894599 hasConcept C2778890363 @default.
- W2074894599 hasConcept C2908647359 @default.
- W2074894599 hasConcept C33923547 @default.
- W2074894599 hasConcept C41008148 @default.
- W2074894599 hasConcept C49781872 @default.
- W2074894599 hasConcept C54355233 @default.
- W2074894599 hasConcept C61420037 @default.
- W2074894599 hasConcept C6557445 @default.
- W2074894599 hasConcept C68873052 @default.
- W2074894599 hasConcept C81917197 @default.
- W2074894599 hasConcept C81941488 @default.
- W2074894599 hasConcept C86803240 @default.
- W2074894599 hasConceptScore W2074894599C103545067 @default.
- W2074894599 hasConceptScore W2074894599C104317684 @default.
- W2074894599 hasConceptScore W2074894599C104959735 @default.
- W2074894599 hasConceptScore W2074894599C105795698 @default.
- W2074894599 hasConceptScore W2074894599C106934330 @default.
- W2074894599 hasConceptScore W2074894599C119857082 @default.
- W2074894599 hasConceptScore W2074894599C12558332 @default.
- W2074894599 hasConceptScore W2074894599C144024400 @default.
- W2074894599 hasConceptScore W2074894599C149923435 @default.
- W2074894599 hasConceptScore W2074894599C161890455 @default.
- W2074894599 hasConceptScore W2074894599C197321923 @default.
- W2074894599 hasConceptScore W2074894599C199360897 @default.
- W2074894599 hasConceptScore W2074894599C2016182 @default.
- W2074894599 hasConceptScore W2074894599C2777782036 @default.
- W2074894599 hasConceptScore W2074894599C2778890363 @default.
- W2074894599 hasConceptScore W2074894599C2908647359 @default.
- W2074894599 hasConceptScore W2074894599C33923547 @default.
- W2074894599 hasConceptScore W2074894599C41008148 @default.
- W2074894599 hasConceptScore W2074894599C49781872 @default.
- W2074894599 hasConceptScore W2074894599C54355233 @default.
- W2074894599 hasConceptScore W2074894599C61420037 @default.