Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074896927> ?p ?o ?g. }
- W2074896927 endingPage "887" @default.
- W2074896927 startingPage "879" @default.
- W2074896927 abstract "In this paper, we report an application of neural networks to simulate daily nitrate-nitrogen and suspended sediment fluxes from a small 7.1 km2 agricultural catchment (Melarchez), 70 km east of Paris, France. Nitrate-nitrogen and sediment losses are only a few possible consequences of soil erosion and biochemical applications associated to human activities such as intensive agriculture. Stacked multilayer perceptrons models (MLPs) like the ones explored here are based on commonly available inputs and yet are reasonably accurate considering their simplicity and ease of implementation. Note that the simulation does not resort on water quality flux observations at previous time steps as model inputs, which would be appropriate, for example, to predict the water chemistry of a drinking water plant a few time steps ahead. The water quality fluxes are strictly mapped to historical mean flux values and to hydro-climatic variables such as stream flow, rainfall, and soil moisture index (12 model input candidates in total), allowing its usage even when no flux observations are available. Self-organizing feature maps based on the network structure established by Kohonen were employed first to produce the training and the testing data sets, with the intent to produce statistically close subsets so that any difference in model performance between validation and testing has to be associated to the model and not to the data subsets. The stacked MLPs reached different levels of performance simulating the nitrate-nitrogen flux and the suspended sediment flux. In the first instance, 2-input stacked MLP nitrate-nitrogen simulations, based on the same-day stream flow and on the 80-cm soil moisture index, have a performance of almost 90% according to the efficiency index. On the other hand, the performance of 3-input stacked MLPs (same-day stream flow, same-day historical flux, and same-day stream flow increment) reached a little more than 75% according to the same criterion. The results presented here are deemed already promising enough, and should encourage water resources managers to implement simple models whenever appropriate." @default.
- W2074896927 created "2016-06-24" @default.
- W2074896927 creator A5017461900 @default.
- W2074896927 creator A5038932581 @default.
- W2074896927 creator A5054079502 @default.
- W2074896927 date "2009-03-01" @default.
- W2074896927 modified "2023-10-16" @default.
- W2074896927 title "A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment" @default.
- W2074896927 cites W1912463333 @default.
- W2074896927 cites W1972805072 @default.
- W2074896927 cites W1982717852 @default.
- W2074896927 cites W1983724666 @default.
- W2074896927 cites W1998442441 @default.
- W2074896927 cites W2004393428 @default.
- W2074896927 cites W2010624461 @default.
- W2074896927 cites W2017198208 @default.
- W2074896927 cites W2020890233 @default.
- W2074896927 cites W2027415115 @default.
- W2074896927 cites W2031636553 @default.
- W2074896927 cites W2031773346 @default.
- W2074896927 cites W2033904036 @default.
- W2074896927 cites W2051199885 @default.
- W2074896927 cites W2052869552 @default.
- W2074896927 cites W2052947666 @default.
- W2074896927 cites W2065329923 @default.
- W2074896927 cites W2068491255 @default.
- W2074896927 cites W2070086504 @default.
- W2074896927 cites W2073491504 @default.
- W2074896927 cites W2083118125 @default.
- W2074896927 cites W2088832068 @default.
- W2074896927 cites W2090596876 @default.
- W2074896927 cites W2095356628 @default.
- W2074896927 cites W2119821103 @default.
- W2074896927 cites W2123011006 @default.
- W2074896927 cites W2126975596 @default.
- W2074896927 cites W2142775068 @default.
- W2074896927 cites W2146577723 @default.
- W2074896927 cites W2167662918 @default.
- W2074896927 cites W28412257 @default.
- W2074896927 cites W2911546748 @default.
- W2074896927 cites W3017323153 @default.
- W2074896927 cites W3018770027 @default.
- W2074896927 cites W4241783848 @default.
- W2074896927 cites W4252379706 @default.
- W2074896927 cites W6972653 @default.
- W2074896927 doi "https://doi.org/10.1016/j.ecolmodel.2008.12.021" @default.
- W2074896927 hasPublicationYear "2009" @default.
- W2074896927 type Work @default.
- W2074896927 sameAs 2074896927 @default.
- W2074896927 citedByCount "36" @default.
- W2074896927 countsByYear W20748969272012 @default.
- W2074896927 countsByYear W20748969272013 @default.
- W2074896927 countsByYear W20748969272014 @default.
- W2074896927 countsByYear W20748969272015 @default.
- W2074896927 countsByYear W20748969272016 @default.
- W2074896927 countsByYear W20748969272017 @default.
- W2074896927 countsByYear W20748969272018 @default.
- W2074896927 countsByYear W20748969272019 @default.
- W2074896927 countsByYear W20748969272020 @default.
- W2074896927 countsByYear W20748969272021 @default.
- W2074896927 countsByYear W20748969272023 @default.
- W2074896927 crossrefType "journal-article" @default.
- W2074896927 hasAuthorship W2074896927A5017461900 @default.
- W2074896927 hasAuthorship W2074896927A5038932581 @default.
- W2074896927 hasAuthorship W2074896927A5054079502 @default.
- W2074896927 hasBestOaLocation W20748969272 @default.
- W2074896927 hasConcept C127313418 @default.
- W2074896927 hasConcept C151730666 @default.
- W2074896927 hasConcept C159390177 @default.
- W2074896927 hasConcept C178790620 @default.
- W2074896927 hasConcept C185592680 @default.
- W2074896927 hasConcept C187320778 @default.
- W2074896927 hasConcept C18903297 @default.
- W2074896927 hasConcept C2776384668 @default.
- W2074896927 hasConcept C2780797713 @default.
- W2074896927 hasConcept C2816523 @default.
- W2074896927 hasConcept C39432304 @default.
- W2074896927 hasConcept C537208039 @default.
- W2074896927 hasConcept C68709404 @default.
- W2074896927 hasConcept C76886044 @default.
- W2074896927 hasConcept C86803240 @default.
- W2074896927 hasConceptScore W2074896927C127313418 @default.
- W2074896927 hasConceptScore W2074896927C151730666 @default.
- W2074896927 hasConceptScore W2074896927C159390177 @default.
- W2074896927 hasConceptScore W2074896927C178790620 @default.
- W2074896927 hasConceptScore W2074896927C185592680 @default.
- W2074896927 hasConceptScore W2074896927C187320778 @default.
- W2074896927 hasConceptScore W2074896927C18903297 @default.
- W2074896927 hasConceptScore W2074896927C2776384668 @default.
- W2074896927 hasConceptScore W2074896927C2780797713 @default.
- W2074896927 hasConceptScore W2074896927C2816523 @default.
- W2074896927 hasConceptScore W2074896927C39432304 @default.
- W2074896927 hasConceptScore W2074896927C537208039 @default.
- W2074896927 hasConceptScore W2074896927C68709404 @default.
- W2074896927 hasConceptScore W2074896927C76886044 @default.
- W2074896927 hasConceptScore W2074896927C86803240 @default.
- W2074896927 hasIssue "6" @default.
- W2074896927 hasLocation W20748969271 @default.