Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074920600> ?p ?o ?g. }
- W2074920600 endingPage "271" @default.
- W2074920600 startingPage "259" @default.
- W2074920600 abstract "Introduction: Pharmacokinetics involves the study of absorption, distribution, metabolism, excretion and toxicity of xenobiotics (ADME-Tox). In this sense, the ADME-Tox profile of a bioactive compound can impact its efficacy and safety. Moreover, efficacy and safety were considered some of the major causes of clinical failures in the development of new chemical entities. In this context, machine learning (ML) techniques have been often used in ADME-Tox studies due to the existence of compounds with known pharmacokinetic properties available for generating predictive models.Areas covered: This review examines the growth in the use of some ML techniques in ADME-Tox studies, in particular supervised and unsupervised techniques. Also, some critical points (e.g., size of the data set and type of output variable) must be considered during the generation of models that relate ADME-Tox properties and biological activity.Expert opinion: ML techniques have been successfully employed in pharmacokinetic studies, helping the complex process of designing new drug candidates from the use of reliable ML models. An application of this procedure would be the prediction of ADME-Tox properties from studies of quantitative structure–activity relationships or the discovery of new compounds from a virtual screening using filters based on results obtained from ML techniques." @default.
- W2074920600 created "2016-06-24" @default.
- W2074920600 creator A5019803207 @default.
- W2074920600 creator A5034015138 @default.
- W2074920600 creator A5044360721 @default.
- W2074920600 creator A5068098943 @default.
- W2074920600 date "2014-12-02" @default.
- W2074920600 modified "2023-10-16" @default.
- W2074920600 title "Applying machine learning techniques for ADME-Tox prediction: a review" @default.
- W2074920600 cites W137858931 @default.
- W2074920600 cites W1507817548 @default.
- W2074920600 cites W1562218083 @default.
- W2074920600 cites W1933697021 @default.
- W2074920600 cites W1970173442 @default.
- W2074920600 cites W1974447936 @default.
- W2074920600 cites W1975448236 @default.
- W2074920600 cites W1978878757 @default.
- W2074920600 cites W1982306264 @default.
- W2074920600 cites W1982320452 @default.
- W2074920600 cites W1982995385 @default.
- W2074920600 cites W1984471054 @default.
- W2074920600 cites W1984940961 @default.
- W2074920600 cites W1988469016 @default.
- W2074920600 cites W1990057891 @default.
- W2074920600 cites W1994849656 @default.
- W2074920600 cites W2002378649 @default.
- W2074920600 cites W2005055640 @default.
- W2074920600 cites W2012411921 @default.
- W2074920600 cites W2013894207 @default.
- W2074920600 cites W2014858249 @default.
- W2074920600 cites W2016307402 @default.
- W2074920600 cites W2025666819 @default.
- W2074920600 cites W2033342433 @default.
- W2074920600 cites W2034489756 @default.
- W2074920600 cites W2039987382 @default.
- W2074920600 cites W2040261924 @default.
- W2074920600 cites W2040472157 @default.
- W2074920600 cites W2041503160 @default.
- W2074920600 cites W2044069680 @default.
- W2074920600 cites W2052798345 @default.
- W2074920600 cites W2053253524 @default.
- W2074920600 cites W2053775952 @default.
- W2074920600 cites W2058707623 @default.
- W2074920600 cites W2067295929 @default.
- W2074920600 cites W2067770243 @default.
- W2074920600 cites W2067951304 @default.
- W2074920600 cites W2068024891 @default.
- W2074920600 cites W2068142305 @default.
- W2074920600 cites W2070603512 @default.
- W2074920600 cites W2074502591 @default.
- W2074920600 cites W2075775075 @default.
- W2074920600 cites W2076498053 @default.
- W2074920600 cites W2077483199 @default.
- W2074920600 cites W2077628785 @default.
- W2074920600 cites W2080355854 @default.
- W2074920600 cites W2088837113 @default.
- W2074920600 cites W2089589794 @default.
- W2074920600 cites W2094836090 @default.
- W2074920600 cites W2103581045 @default.
- W2074920600 cites W2104090369 @default.
- W2074920600 cites W2108285359 @default.
- W2074920600 cites W2109978476 @default.
- W2074920600 cites W2123590349 @default.
- W2074920600 cites W2126683408 @default.
- W2074920600 cites W2128728535 @default.
- W2074920600 cites W2131666270 @default.
- W2074920600 cites W2134450203 @default.
- W2074920600 cites W2135471942 @default.
- W2074920600 cites W2150562758 @default.
- W2074920600 cites W2153110742 @default.
- W2074920600 cites W2163646378 @default.
- W2074920600 cites W2168276530 @default.
- W2074920600 cites W2168493021 @default.
- W2074920600 cites W2170930327 @default.
- W2074920600 cites W2175094258 @default.
- W2074920600 cites W2217436801 @default.
- W2074920600 cites W2787894218 @default.
- W2074920600 cites W2911964244 @default.
- W2074920600 cites W4230674625 @default.
- W2074920600 cites W4249496659 @default.
- W2074920600 cites W4251844152 @default.
- W2074920600 doi "https://doi.org/10.1517/17425255.2015.980814" @default.
- W2074920600 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25440524" @default.
- W2074920600 hasPublicationYear "2014" @default.
- W2074920600 type Work @default.
- W2074920600 sameAs 2074920600 @default.
- W2074920600 citedByCount "116" @default.
- W2074920600 countsByYear W20749206002015 @default.
- W2074920600 countsByYear W20749206002016 @default.
- W2074920600 countsByYear W20749206002017 @default.
- W2074920600 countsByYear W20749206002018 @default.
- W2074920600 countsByYear W20749206002019 @default.
- W2074920600 countsByYear W20749206002020 @default.
- W2074920600 countsByYear W20749206002021 @default.
- W2074920600 countsByYear W20749206002022 @default.
- W2074920600 countsByYear W20749206002023 @default.
- W2074920600 crossrefType "journal-article" @default.
- W2074920600 hasAuthorship W2074920600A5019803207 @default.