Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074927164> ?p ?o ?g. }
- W2074927164 endingPage "647" @default.
- W2074927164 startingPage "630" @default.
- W2074927164 abstract "Recently, the ensemble learning approaches have been proven to be quite effective for variable selection in linear regression models. In general, a good variable selection ensemble should consist of a diverse collection of strong members. Based on the parallel genetic algorithm (PGA) proposed in [41 M. Zhu and H.A. Chipman, Darwinian evolution in parallel universes: A parallel genetic algorithm for variable selection, Technometrics 48(4) (2006), pp. 491–502. doi: 10.1198/004017006000000093[Taylor & Francis Online], [Web of Science ®] , [Google Scholar]], in this paper, we propose a novel method RandGA through injecting randomness into PGA with the aim to increase the diversity among ensemble members. Using a number of simulated data sets, we show that the newly proposed method RandGA compares favorably with other variable selection techniques. As a real example, the new method is applied to the diabetes data." @default.
- W2074927164 created "2016-06-24" @default.
- W2074927164 creator A5014312349 @default.
- W2074927164 creator A5071706403 @default.
- W2074927164 creator A5073786224 @default.
- W2074927164 date "2014-11-17" @default.
- W2074927164 modified "2023-09-23" @default.
- W2074927164 title "RandGA: injecting randomness into parallel genetic algorithm for variable selection" @default.
- W2074927164 cites W1678356000 @default.
- W2074927164 cites W1974207438 @default.
- W2074927164 cites W1979568080 @default.
- W2074927164 cites W1985414995 @default.
- W2074927164 cites W2004014581 @default.
- W2074927164 cites W2010741163 @default.
- W2074927164 cites W2015916203 @default.
- W2074927164 cites W2016717446 @default.
- W2074927164 cites W2020925091 @default.
- W2074927164 cites W2027541734 @default.
- W2074927164 cites W2029218322 @default.
- W2074927164 cites W2061082730 @default.
- W2074927164 cites W2063978378 @default.
- W2074927164 cites W2067035760 @default.
- W2074927164 cites W2073738917 @default.
- W2074927164 cites W2074682976 @default.
- W2074927164 cites W2082395561 @default.
- W2074927164 cites W2100128988 @default.
- W2074927164 cites W2103346566 @default.
- W2074927164 cites W2108273125 @default.
- W2074927164 cites W2122825543 @default.
- W2074927164 cites W2123525763 @default.
- W2074927164 cites W2149584226 @default.
- W2074927164 cites W2150757437 @default.
- W2074927164 cites W2157695422 @default.
- W2074927164 cites W2167055186 @default.
- W2074927164 cites W2562162676 @default.
- W2074927164 cites W2570107029 @default.
- W2074927164 cites W2787894218 @default.
- W2074927164 cites W2911964244 @default.
- W2074927164 cites W3037000643 @default.
- W2074927164 cites W3099723433 @default.
- W2074927164 cites W3105034597 @default.
- W2074927164 cites W3121452939 @default.
- W2074927164 cites W3124986623 @default.
- W2074927164 cites W4212883601 @default.
- W2074927164 cites W4229873072 @default.
- W2074927164 cites W4238943743 @default.
- W2074927164 cites W4300819821 @default.
- W2074927164 doi "https://doi.org/10.1080/02664763.2014.980788" @default.
- W2074927164 hasPublicationYear "2014" @default.
- W2074927164 type Work @default.
- W2074927164 sameAs 2074927164 @default.
- W2074927164 citedByCount "11" @default.
- W2074927164 countsByYear W20749271642015 @default.
- W2074927164 countsByYear W20749271642016 @default.
- W2074927164 countsByYear W20749271642017 @default.
- W2074927164 countsByYear W20749271642018 @default.
- W2074927164 countsByYear W20749271642019 @default.
- W2074927164 countsByYear W20749271642021 @default.
- W2074927164 crossrefType "journal-article" @default.
- W2074927164 hasAuthorship W2074927164A5014312349 @default.
- W2074927164 hasAuthorship W2074927164A5071706403 @default.
- W2074927164 hasAuthorship W2074927164A5073786224 @default.
- W2074927164 hasConcept C105795698 @default.
- W2074927164 hasConcept C11413529 @default.
- W2074927164 hasConcept C119857082 @default.
- W2074927164 hasConcept C125112378 @default.
- W2074927164 hasConcept C134306372 @default.
- W2074927164 hasConcept C148483581 @default.
- W2074927164 hasConcept C154945302 @default.
- W2074927164 hasConcept C182365436 @default.
- W2074927164 hasConcept C33923547 @default.
- W2074927164 hasConcept C41008148 @default.
- W2074927164 hasConcept C81917197 @default.
- W2074927164 hasConcept C8880873 @default.
- W2074927164 hasConceptScore W2074927164C105795698 @default.
- W2074927164 hasConceptScore W2074927164C11413529 @default.
- W2074927164 hasConceptScore W2074927164C119857082 @default.
- W2074927164 hasConceptScore W2074927164C125112378 @default.
- W2074927164 hasConceptScore W2074927164C134306372 @default.
- W2074927164 hasConceptScore W2074927164C148483581 @default.
- W2074927164 hasConceptScore W2074927164C154945302 @default.
- W2074927164 hasConceptScore W2074927164C182365436 @default.
- W2074927164 hasConceptScore W2074927164C33923547 @default.
- W2074927164 hasConceptScore W2074927164C41008148 @default.
- W2074927164 hasConceptScore W2074927164C81917197 @default.
- W2074927164 hasConceptScore W2074927164C8880873 @default.
- W2074927164 hasIssue "3" @default.
- W2074927164 hasLocation W20749271641 @default.
- W2074927164 hasOpenAccess W2074927164 @default.
- W2074927164 hasPrimaryLocation W20749271641 @default.
- W2074927164 hasRelatedWork W1608872107 @default.
- W2074927164 hasRelatedWork W192347846 @default.
- W2074927164 hasRelatedWork W1982915083 @default.
- W2074927164 hasRelatedWork W2051956912 @default.
- W2074927164 hasRelatedWork W2094370626 @default.
- W2074927164 hasRelatedWork W2359549665 @default.
- W2074927164 hasRelatedWork W2376475375 @default.
- W2074927164 hasRelatedWork W2389452668 @default.