Matches in SemOpenAlex for { <https://semopenalex.org/work/W2074992743> ?p ?o ?g. }
- W2074992743 endingPage "852" @default.
- W2074992743 startingPage "843" @default.
- W2074992743 abstract "The small GTP-binding protein Cdc42, the guanine nucleotide exchange factor Scd1, the p21-activated kinase Shk1, and the adaptor protein Scd2 are involved in the Cdc42-dependent signaling cascade in fission yeast. In the present study, we analyzed the Cdc42 binding and scaffolding activities of Scd2 by co-precipitation assays. We found that two SH3-containing regions, amino acid residues 1–87 (CB1 (Cdc42-binding region 1)) and 110–266 (CB2), of Scd2 can bind to the GTP-bound form of Cdc42. CB2 is cryptic because of the intramolecular binding between the SH3 domain in CB2 (SH3(C)) and the PX domain and binds to Cdc42 only when the Scd2 PB1 domain binds to the PC motif-containing region (residues 760–872) of Scd1. This CB2·Cdc42 association, which would stabilize the open configuration of Scd2, enables the SH3(C) domain to bind to the polyproline motif of Shk1. We also found that the GTP-bound form of Cdc42 binds to the CRIB motif of Shk1 more strongly than to Scd2. Thus, Scd2 functions as a scaffold to form a protein complex, and the GTP-bound Cdc42 might be transferred effectively from the upstream activator Scd1 to the downstream effector Shk1 via Scd2. The small GTP-binding protein Cdc42, the guanine nucleotide exchange factor Scd1, the p21-activated kinase Shk1, and the adaptor protein Scd2 are involved in the Cdc42-dependent signaling cascade in fission yeast. In the present study, we analyzed the Cdc42 binding and scaffolding activities of Scd2 by co-precipitation assays. We found that two SH3-containing regions, amino acid residues 1–87 (CB1 (Cdc42-binding region 1)) and 110–266 (CB2), of Scd2 can bind to the GTP-bound form of Cdc42. CB2 is cryptic because of the intramolecular binding between the SH3 domain in CB2 (SH3(C)) and the PX domain and binds to Cdc42 only when the Scd2 PB1 domain binds to the PC motif-containing region (residues 760–872) of Scd1. This CB2·Cdc42 association, which would stabilize the open configuration of Scd2, enables the SH3(C) domain to bind to the polyproline motif of Shk1. We also found that the GTP-bound form of Cdc42 binds to the CRIB motif of Shk1 more strongly than to Scd2. Thus, Scd2 functions as a scaffold to form a protein complex, and the GTP-bound Cdc42 might be transferred effectively from the upstream activator Scd1 to the downstream effector Shk1 via Scd2. Ste20 homologous kinase 1 Cdc42 and Rac interactive binding src-homologous 3 glutathione S-transferase guanosine 5′-O-[γ-thio]triphosphate phosphate-buffered saline p21-activated kinase The Cdc42/Rac protein is a member of the Rho family of small GTP-binding proteins (1Kaibuchi K. Kuroda S. Amano M. Annu. Rev. Biochem. 1999; 68: 459-486Crossref PubMed Scopus (884) Google Scholar, 2Bishop A.L. Hall A. Biochem. J. 2000; 348: 241-255Crossref PubMed Scopus (1661) Google Scholar, 3Erickson J.W. Cerione R.A. Curr. Opin. Cell Biol. 2001; 13: 153-157Crossref PubMed Scopus (150) Google Scholar, 4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar). The Cdc42/Rac protein is involved in eukaryotic cellular signaling pathways regulating cell morphology, cell adhesion, actin dynamics, cell cycle progression, and kinase signaling (1Kaibuchi K. Kuroda S. Amano M. Annu. Rev. Biochem. 1999; 68: 459-486Crossref PubMed Scopus (884) Google Scholar, 2Bishop A.L. Hall A. Biochem. J. 2000; 348: 241-255Crossref PubMed Scopus (1661) Google Scholar, 3Erickson J.W. Cerione R.A. Curr. Opin. Cell Biol. 2001; 13: 153-157Crossref PubMed Scopus (150) Google Scholar, 4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar), as a molecular switch cycling between the GDP-bound, inactive form and the GTP-bound, active form (4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar, 5Bourne H.R. Sanders D.A. McCormick F. Nature. 1990; 348: 125-132Crossref PubMed Scopus (1825) Google Scholar, 6Boguski M.S. McCormick F. Nature. 1993; 366: 643-654Crossref PubMed Scopus (1752) Google Scholar, 7Polakis P. McCormick F. J. Biol. Chem. 1993; 268: 9157-9160Abstract Full Text PDF PubMed Google Scholar, 8Sprang S.R. Annu. Rev. Biochem. 1997; 66: 639-678Crossref PubMed Scopus (880) Google Scholar). Guanine nucleotide exchange factors for Cdc42/Rac, containing Dbl homology domains, promote GDP dissociation and GTP association. The GTP-bound form of Cdc42/Rac interacts with a variety of target proteins to initiate downstream responses (4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar, 5Bourne H.R. Sanders D.A. McCormick F. Nature. 1990; 348: 125-132Crossref PubMed Scopus (1825) Google Scholar, 6Boguski M.S. McCormick F. Nature. 1993; 366: 643-654Crossref PubMed Scopus (1752) Google Scholar, 7Polakis P. McCormick F. J. Biol. Chem. 1993; 268: 9157-9160Abstract Full Text PDF PubMed Google Scholar, 8Sprang S.R. Annu. Rev. Biochem. 1997; 66: 639-678Crossref PubMed Scopus (880) Google Scholar). The Cdc42 protein of the fission yeastSchizosaccharomyces pombe is involved in controlling polarized cell growth (9Miller P.J. Johnson D.I. Mol. Cell. Biol. 1994; 14: 1075-1083Crossref PubMed Scopus (171) Google Scholar, 10Isshiki T. Tanaka K. Yamamoto M. Tanpakushitsu Kakusan Koso. 1994; 39: 429-438PubMed Google Scholar, 11Hughes D.A. Semin. Cell Biol. 1995; 6: 89-94Crossref PubMed Scopus (36) Google Scholar). The disruption of the cdc42gene is lethal to fission yeast, and the cdc42 mutants exhibit abnormal morphological phenotypes (9Miller P.J. Johnson D.I. Mol. Cell. Biol. 1994; 14: 1075-1083Crossref PubMed Scopus (171) Google Scholar). Genetic and molecular studies suggest that a Dbl homology domain-containing Scd1 protein functions as the guanine nucleotide exchange factor for the fission yeast Cdc42 protein and that the GTP-bound Cdc42 activates Ste20 homologous kinase 1 (Shk1)1(12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar, 13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 14Marcus S. Polverino A. Chang E. Robbins D. Cobb M.H. Wigler M.H. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 6180-6184Crossref PubMed Scopus (135) Google Scholar, 15Ottilie S. Miller P.J. Johnson D.I. Creasy C.L. Sells M.A. Bagrodia S. Forsburg S.L. Chernoff J. EMBO J. 1995; 14: 5908-5919Crossref PubMed Scopus (127) Google Scholar).The fission yeast Shk1 belongs to the family of the p21-activated kinase (PAK), which is a highly conserved serine/threonine kinase activated by the Cdc42/Rac protein. PAK consists of an amino-terminal regulatory region and a carboxyl-terminal kinase domain. Most of the PAKs contain a Cdc42 and Rac interactive binding (CRIB) motif in the regulatory region, which binds to the GTP-bound Cdc42/Rac protein (16Burbelo P.D. Drechsel D. Hall A. J. Biol. Chem. 1995; 270: 29071-29074Abstract Full Text Full Text PDF PubMed Scopus (553) Google Scholar,17Pirone D.M. Carter D.E. Burbelo P.D. Trends Genet. 2001; 17: 370-373Abstract Full Text Full Text PDF PubMed Scopus (42) Google Scholar). Intramolecular binding of the CRIB motif of PAK to the kinase domain inhibits the enzyme activity (18Zenke F.T. King C.C. Bohl B.P. Bokoch G.M. J. Biol. Chem. 1999; 274: 32565-32573Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 19Tu H. Wigler M. Mol. Cell. Biol. 1999; 19: 602-611Crossref PubMed Scopus (78) Google Scholar, 20Lei M., Lu, W. Meng W. Parrini M.C. Eck M.J. Mayer B.J. Harrison S.C. Cell. 2000; 102: 387-397Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 21Chong C. Tan L. Lim L. Manser E. J. Biol. Chem. 2001; 276: 17347-17353Abstract Full Text Full Text PDF PubMed Scopus (193) Google Scholar, 22Buchwald G. Hostinova E. Rudolph M.G. Kraemer A. Sickmann A. Meyer H.E. Scheffzek K. Wittinghofer A. Mol. Cell. Biol. 2001; 21: 5179-5189Crossref PubMed Scopus (88) Google Scholar). Recent studies indicate that the Cdc42/Rac protein relieves this autoinhibition, thereby allosterically inducing the activation of the kinase activity (18Zenke F.T. King C.C. Bohl B.P. Bokoch G.M. J. Biol. Chem. 1999; 274: 32565-32573Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 19Tu H. Wigler M. Mol. Cell. Biol. 1999; 19: 602-611Crossref PubMed Scopus (78) Google Scholar, 20Lei M., Lu, W. Meng W. Parrini M.C. Eck M.J. Mayer B.J. Harrison S.C. Cell. 2000; 102: 387-397Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 21Chong C. Tan L. Lim L. Manser E. J. Biol. Chem. 2001; 276: 17347-17353Abstract Full Text Full Text PDF PubMed Scopus (193) Google Scholar, 22Buchwald G. Hostinova E. Rudolph M.G. Kraemer A. Sickmann A. Meyer H.E. Scheffzek K. Wittinghofer A. Mol. Cell. Biol. 2001; 21: 5179-5189Crossref PubMed Scopus (88) Google Scholar). The fission yeast PAK family kinase, Shk1, is positively regulated by the adaptor protein, Scd2 (shape andconjugation deficiency 2, also called Ral3), as well as by Cdc42 (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar, 13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar). Co-expression of Scd2 enhances the binding of Shk1 to Cdc42 in a yeast two-hybrid system (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar,13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar). Furthermore, the overexpression of Scd2 stimulates the autophosphorylation activity of Shk1 in vivo, whereas the recombinant Scd2 by itself is not able to stimulate it in vitro (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar). These results indicate that Scd2 participates in the activation of Shk1 but is not sufficient for it.The Scd2 protein has two tandem SH3 domains (SH3(N) and SH3(C)), a PX (phox homologous, also known as PB2) domain, and a PB1 (phox and Bem1p1) domain (Fig. 1 A) (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 23Hiroaki H. Ago T. Ito T. Sumimoto H. Kohda D. Nat. Struct. Biol. 2001; 8: 526-530Crossref PubMed Scopus (149) Google Scholar, 24Ito T. Matsui Y. Ago T. Ota K. Sumimoto H. EMBO J. 2001; 20: 3938-3946Crossref PubMed Scopus (136) Google Scholar, 25Ponting C.P. Protein Sci. 1996; 5: 2353-2357Crossref PubMed Scopus (265) Google Scholar, 26Terasawa H. Noda Y. Ito T. Hatanaka H. Ichikawa S. Ogura K. Sumimoto H. Inagaki F. EMBO J. 2001; 20: 3947-3956Crossref PubMed Scopus (59) Google Scholar, 27Ponting C.P. Ito T. Moscat J. Diaz-Meco M.T. Inagaki F. Sumimoto H. Trends Biochem. Sci. 2002; 27: 10Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar). Most SH3 domains are binding modules for Pro-Xaa-Xaa-Pro or polyproline motifs, and actually the SH3(C) domain of Scd2 binds to a polyproline motif in Shk1 (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar). The PX domain has a dual role, serving as an SH3-binding polyproline-containing module as well as a phosphoinositide-binding module, in the cases of proteins other than Scd2 (23Hiroaki H. Ago T. Ito T. Sumimoto H. Kohda D. Nat. Struct. Biol. 2001; 8: 526-530Crossref PubMed Scopus (149) Google Scholar, 25Ponting C.P. Protein Sci. 1996; 5: 2353-2357Crossref PubMed Scopus (265) Google Scholar, 28Bravo J. Karathanassis D. Pacold C.M. Pacold M.E. Ellson C.D. Anderson K.E. Butler P.J. Lavenir I. Perisic O. Hawkins P.T. Stephens L. Williams R.L. Mol Cell. 2001; 8: 829-839Abstract Full Text Full Text PDF PubMed Scopus (234) Google Scholar, 29Song X., Xu, W. Zhang A. Huang G. Liang X. Virbasius J.V. Czech M.P. Zhou G.W. Biochemistry. 2001; 40: 8940-8944Crossref PubMed Scopus (106) Google Scholar, 30Wishart M.J. Taylor G.S. Dixon J.E. Cell. 2001; 105: 817-820Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar, 31Yu J.W. Lemmon M.A. J. Biol. Chem. 2001; 276: 44179-44184Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). The PB1 domain binds to the PC (phox and Cdc) motif-containing region of Scd1 (Scd1-PC) (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 24Ito T. Matsui Y. Ago T. Ota K. Sumimoto H. EMBO J. 2001; 20: 3938-3946Crossref PubMed Scopus (136) Google Scholar, 26Terasawa H. Noda Y. Ito T. Hatanaka H. Ichikawa S. Ogura K. Sumimoto H. Inagaki F. EMBO J. 2001; 20: 3947-3956Crossref PubMed Scopus (59) Google Scholar, 27Ponting C.P. Ito T. Moscat J. Diaz-Meco M.T. Inagaki F. Sumimoto H. Trends Biochem. Sci. 2002; 27: 10Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar, 32Nakamura R. Sumimoto H. Mizuki K. Hata K. Ago T. Kitajima S. Takeshige K. Sakaki Y. Ito T. Eur. J. Biochem. 1998; 251: 583-589Crossref PubMed Scopus (72) Google Scholar). Because the budding yeast Saccharomyces cerevisiae homologue of Scd2, Bem1p, binds to Cdc42 in a GTP-dependent manner (33Bose I. Irazoqui J.E. Moskow J.J. Bardes E.S. Zyla T.R. Lew D.J. J. Biol. Chem. 2001; 276: 7176-7186Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar), Scd2 is expected to bind to the GTP-bound form of Cdc42. However, neither Bem1p nor Scd2 contains the CRIB motif (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 33Bose I. Irazoqui J.E. Moskow J.J. Bardes E.S. Zyla T.R. Lew D.J. J. Biol. Chem. 2001; 276: 7176-7186Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar), and their Cdc42-binding regions are unknown.In the present study on the fission yeast system, we analyzed the interactions of Scd2 with Scd1, Cdc42, and Shk1. We found that the four domains of Scd2 have important roles in the interactions with these proteins. The SH3(N)- and SH3(C)-containing regions (CB1 and CB2 (Cdc42-binding regions 1 and2)) bind to the switch regions of the GTP-bound form of Cdc42. The SH3(C) domain intramolecularly binds to the PX domain, which prevents CB2 from binding to Cdc42. CB2 is able to bind to the GTP-bound form of Cdc42 when the PB1 domain of Scd2 is associated with the PC motif-containing region of Scd1 (Scd1-PC). Furthermore, the binding of the polyproline-binding site of the SH3(C) domain to Shk1 is enhanced when Scd2 binds to Scd1-PC and the GTP-bound form of Cdc42. Thus, these four proteins can form a quaternary complex that includes two Cdc42-binding proteins. On the other hand, we also found that the CRIB motif of Shk1 binds preferentially to Cdc42, even in the presence of Scd2. The Cdc42/Rac protein is a member of the Rho family of small GTP-binding proteins (1Kaibuchi K. Kuroda S. Amano M. Annu. Rev. Biochem. 1999; 68: 459-486Crossref PubMed Scopus (884) Google Scholar, 2Bishop A.L. Hall A. Biochem. J. 2000; 348: 241-255Crossref PubMed Scopus (1661) Google Scholar, 3Erickson J.W. Cerione R.A. Curr. Opin. Cell Biol. 2001; 13: 153-157Crossref PubMed Scopus (150) Google Scholar, 4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar). The Cdc42/Rac protein is involved in eukaryotic cellular signaling pathways regulating cell morphology, cell adhesion, actin dynamics, cell cycle progression, and kinase signaling (1Kaibuchi K. Kuroda S. Amano M. Annu. Rev. Biochem. 1999; 68: 459-486Crossref PubMed Scopus (884) Google Scholar, 2Bishop A.L. Hall A. Biochem. J. 2000; 348: 241-255Crossref PubMed Scopus (1661) Google Scholar, 3Erickson J.W. Cerione R.A. Curr. Opin. Cell Biol. 2001; 13: 153-157Crossref PubMed Scopus (150) Google Scholar, 4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar), as a molecular switch cycling between the GDP-bound, inactive form and the GTP-bound, active form (4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar, 5Bourne H.R. Sanders D.A. McCormick F. Nature. 1990; 348: 125-132Crossref PubMed Scopus (1825) Google Scholar, 6Boguski M.S. McCormick F. Nature. 1993; 366: 643-654Crossref PubMed Scopus (1752) Google Scholar, 7Polakis P. McCormick F. J. Biol. Chem. 1993; 268: 9157-9160Abstract Full Text PDF PubMed Google Scholar, 8Sprang S.R. Annu. Rev. Biochem. 1997; 66: 639-678Crossref PubMed Scopus (880) Google Scholar). Guanine nucleotide exchange factors for Cdc42/Rac, containing Dbl homology domains, promote GDP dissociation and GTP association. The GTP-bound form of Cdc42/Rac interacts with a variety of target proteins to initiate downstream responses (4Takai Y. Sasaki T. Matozaki T. Physiol. Rev. 2001; 81: 153-208Crossref PubMed Scopus (2038) Google Scholar, 5Bourne H.R. Sanders D.A. McCormick F. Nature. 1990; 348: 125-132Crossref PubMed Scopus (1825) Google Scholar, 6Boguski M.S. McCormick F. Nature. 1993; 366: 643-654Crossref PubMed Scopus (1752) Google Scholar, 7Polakis P. McCormick F. J. Biol. Chem. 1993; 268: 9157-9160Abstract Full Text PDF PubMed Google Scholar, 8Sprang S.R. Annu. Rev. Biochem. 1997; 66: 639-678Crossref PubMed Scopus (880) Google Scholar). The Cdc42 protein of the fission yeastSchizosaccharomyces pombe is involved in controlling polarized cell growth (9Miller P.J. Johnson D.I. Mol. Cell. Biol. 1994; 14: 1075-1083Crossref PubMed Scopus (171) Google Scholar, 10Isshiki T. Tanaka K. Yamamoto M. Tanpakushitsu Kakusan Koso. 1994; 39: 429-438PubMed Google Scholar, 11Hughes D.A. Semin. Cell Biol. 1995; 6: 89-94Crossref PubMed Scopus (36) Google Scholar). The disruption of the cdc42gene is lethal to fission yeast, and the cdc42 mutants exhibit abnormal morphological phenotypes (9Miller P.J. Johnson D.I. Mol. Cell. Biol. 1994; 14: 1075-1083Crossref PubMed Scopus (171) Google Scholar). Genetic and molecular studies suggest that a Dbl homology domain-containing Scd1 protein functions as the guanine nucleotide exchange factor for the fission yeast Cdc42 protein and that the GTP-bound Cdc42 activates Ste20 homologous kinase 1 (Shk1)1(12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar, 13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 14Marcus S. Polverino A. Chang E. Robbins D. Cobb M.H. Wigler M.H. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 6180-6184Crossref PubMed Scopus (135) Google Scholar, 15Ottilie S. Miller P.J. Johnson D.I. Creasy C.L. Sells M.A. Bagrodia S. Forsburg S.L. Chernoff J. EMBO J. 1995; 14: 5908-5919Crossref PubMed Scopus (127) Google Scholar). The fission yeast Shk1 belongs to the family of the p21-activated kinase (PAK), which is a highly conserved serine/threonine kinase activated by the Cdc42/Rac protein. PAK consists of an amino-terminal regulatory region and a carboxyl-terminal kinase domain. Most of the PAKs contain a Cdc42 and Rac interactive binding (CRIB) motif in the regulatory region, which binds to the GTP-bound Cdc42/Rac protein (16Burbelo P.D. Drechsel D. Hall A. J. Biol. Chem. 1995; 270: 29071-29074Abstract Full Text Full Text PDF PubMed Scopus (553) Google Scholar,17Pirone D.M. Carter D.E. Burbelo P.D. Trends Genet. 2001; 17: 370-373Abstract Full Text Full Text PDF PubMed Scopus (42) Google Scholar). Intramolecular binding of the CRIB motif of PAK to the kinase domain inhibits the enzyme activity (18Zenke F.T. King C.C. Bohl B.P. Bokoch G.M. J. Biol. Chem. 1999; 274: 32565-32573Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 19Tu H. Wigler M. Mol. Cell. Biol. 1999; 19: 602-611Crossref PubMed Scopus (78) Google Scholar, 20Lei M., Lu, W. Meng W. Parrini M.C. Eck M.J. Mayer B.J. Harrison S.C. Cell. 2000; 102: 387-397Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 21Chong C. Tan L. Lim L. Manser E. J. Biol. Chem. 2001; 276: 17347-17353Abstract Full Text Full Text PDF PubMed Scopus (193) Google Scholar, 22Buchwald G. Hostinova E. Rudolph M.G. Kraemer A. Sickmann A. Meyer H.E. Scheffzek K. Wittinghofer A. Mol. Cell. Biol. 2001; 21: 5179-5189Crossref PubMed Scopus (88) Google Scholar). Recent studies indicate that the Cdc42/Rac protein relieves this autoinhibition, thereby allosterically inducing the activation of the kinase activity (18Zenke F.T. King C.C. Bohl B.P. Bokoch G.M. J. Biol. Chem. 1999; 274: 32565-32573Abstract Full Text Full Text PDF PubMed Scopus (203) Google Scholar, 19Tu H. Wigler M. Mol. Cell. Biol. 1999; 19: 602-611Crossref PubMed Scopus (78) Google Scholar, 20Lei M., Lu, W. Meng W. Parrini M.C. Eck M.J. Mayer B.J. Harrison S.C. Cell. 2000; 102: 387-397Abstract Full Text Full Text PDF PubMed Scopus (436) Google Scholar, 21Chong C. Tan L. Lim L. Manser E. J. Biol. Chem. 2001; 276: 17347-17353Abstract Full Text Full Text PDF PubMed Scopus (193) Google Scholar, 22Buchwald G. Hostinova E. Rudolph M.G. Kraemer A. Sickmann A. Meyer H.E. Scheffzek K. Wittinghofer A. Mol. Cell. Biol. 2001; 21: 5179-5189Crossref PubMed Scopus (88) Google Scholar). The fission yeast PAK family kinase, Shk1, is positively regulated by the adaptor protein, Scd2 (shape andconjugation deficiency 2, also called Ral3), as well as by Cdc42 (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar, 13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar). Co-expression of Scd2 enhances the binding of Shk1 to Cdc42 in a yeast two-hybrid system (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar,13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar). Furthermore, the overexpression of Scd2 stimulates the autophosphorylation activity of Shk1 in vivo, whereas the recombinant Scd2 by itself is not able to stimulate it in vitro (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar). These results indicate that Scd2 participates in the activation of Shk1 but is not sufficient for it. The Scd2 protein has two tandem SH3 domains (SH3(N) and SH3(C)), a PX (phox homologous, also known as PB2) domain, and a PB1 (phox and Bem1p1) domain (Fig. 1 A) (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 23Hiroaki H. Ago T. Ito T. Sumimoto H. Kohda D. Nat. Struct. Biol. 2001; 8: 526-530Crossref PubMed Scopus (149) Google Scholar, 24Ito T. Matsui Y. Ago T. Ota K. Sumimoto H. EMBO J. 2001; 20: 3938-3946Crossref PubMed Scopus (136) Google Scholar, 25Ponting C.P. Protein Sci. 1996; 5: 2353-2357Crossref PubMed Scopus (265) Google Scholar, 26Terasawa H. Noda Y. Ito T. Hatanaka H. Ichikawa S. Ogura K. Sumimoto H. Inagaki F. EMBO J. 2001; 20: 3947-3956Crossref PubMed Scopus (59) Google Scholar, 27Ponting C.P. Ito T. Moscat J. Diaz-Meco M.T. Inagaki F. Sumimoto H. Trends Biochem. Sci. 2002; 27: 10Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar). Most SH3 domains are binding modules for Pro-Xaa-Xaa-Pro or polyproline motifs, and actually the SH3(C) domain of Scd2 binds to a polyproline motif in Shk1 (12Chang E. Bartholomeusz G. Pimental R. Chen J. Lai H. Wang L. Yang P. Marcus S. Mol. Cell. Biol. 1999; 19: 8066-8074Crossref PubMed Scopus (36) Google Scholar). The PX domain has a dual role, serving as an SH3-binding polyproline-containing module as well as a phosphoinositide-binding module, in the cases of proteins other than Scd2 (23Hiroaki H. Ago T. Ito T. Sumimoto H. Kohda D. Nat. Struct. Biol. 2001; 8: 526-530Crossref PubMed Scopus (149) Google Scholar, 25Ponting C.P. Protein Sci. 1996; 5: 2353-2357Crossref PubMed Scopus (265) Google Scholar, 28Bravo J. Karathanassis D. Pacold C.M. Pacold M.E. Ellson C.D. Anderson K.E. Butler P.J. Lavenir I. Perisic O. Hawkins P.T. Stephens L. Williams R.L. Mol Cell. 2001; 8: 829-839Abstract Full Text Full Text PDF PubMed Scopus (234) Google Scholar, 29Song X., Xu, W. Zhang A. Huang G. Liang X. Virbasius J.V. Czech M.P. Zhou G.W. Biochemistry. 2001; 40: 8940-8944Crossref PubMed Scopus (106) Google Scholar, 30Wishart M.J. Taylor G.S. Dixon J.E. Cell. 2001; 105: 817-820Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar, 31Yu J.W. Lemmon M.A. J. Biol. Chem. 2001; 276: 44179-44184Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar). The PB1 domain binds to the PC (phox and Cdc) motif-containing region of Scd1 (Scd1-PC) (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 24Ito T. Matsui Y. Ago T. Ota K. Sumimoto H. EMBO J. 2001; 20: 3938-3946Crossref PubMed Scopus (136) Google Scholar, 26Terasawa H. Noda Y. Ito T. Hatanaka H. Ichikawa S. Ogura K. Sumimoto H. Inagaki F. EMBO J. 2001; 20: 3947-3956Crossref PubMed Scopus (59) Google Scholar, 27Ponting C.P. Ito T. Moscat J. Diaz-Meco M.T. Inagaki F. Sumimoto H. Trends Biochem. Sci. 2002; 27: 10Abstract Full Text Full Text PDF PubMed Scopus (55) Google Scholar, 32Nakamura R. Sumimoto H. Mizuki K. Hata K. Ago T. Kitajima S. Takeshige K. Sakaki Y. Ito T. Eur. J. Biochem. 1998; 251: 583-589Crossref PubMed Scopus (72) Google Scholar). Because the budding yeast Saccharomyces cerevisiae homologue of Scd2, Bem1p, binds to Cdc42 in a GTP-dependent manner (33Bose I. Irazoqui J.E. Moskow J.J. Bardes E.S. Zyla T.R. Lew D.J. J. Biol. Chem. 2001; 276: 7176-7186Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar), Scd2 is expected to bind to the GTP-bound form of Cdc42. However, neither Bem1p nor Scd2 contains the CRIB motif (13Chang E.C. Barr M. Wang Y. Jung V., Xu, H.P. Wigler M.H. Cell. 1994; 79: 131-141Abstract Full Text PDF PubMed Scopus (242) Google Scholar, 33Bose I. Irazoqui J.E. Moskow J.J. Bardes E.S. Zyla T.R. Lew D.J. J. Biol. Chem. 2001; 276: 7176-7186Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar), and their Cdc42-binding regions are unknown. In the present study on the fission yeast system, we analyzed the interactions of Scd2 with Scd1, Cdc42, and Shk1. We found that the four domains of Scd2 have important roles in the interactions with these proteins. The SH3(N)- and SH3(C)-containing regions (CB1 and CB2 (Cdc42-binding regions 1 and2)) bind to the switch regions of the GTP-bound form of Cdc42. The SH3(C) domain intramolecularly binds to the PX domain, which prevents CB2 from binding to Cdc42. CB2 is able to bind to the GTP-bound form of Cdc42 when the PB1 domain of Scd2 is associated with the PC motif-containing region of Scd1 (Scd1-PC). Furthermore, the binding of the polyproline-binding site of the SH3(C) domain to Shk1 is enhanced when Scd2 binds to Scd1-PC and the GTP-bound form of Cdc42. Thus, these four proteins can form a quaternary complex that includes two Cdc42-binding proteins. On the other hand, we also found that the CRIB motif of Shk1 binds preferentially to Cdc42, even in the presence of Scd2. We are grateful to M. Yamamoto for providing the scd1/ral1 and scd2/ral3genes and to the members of our laboratory for comments and helpful discussions on this work." @default.
- W2074992743 created "2016-06-24" @default.
- W2074992743 creator A5012045946 @default.
- W2074992743 creator A5027781657 @default.
- W2074992743 creator A5048464313 @default.
- W2074992743 date "2003-01-01" @default.
- W2074992743 modified "2023-09-27" @default.
- W2074992743 title "The Cdc42 Binding and Scaffolding Activities of the Fission Yeast Adaptor Protein Scd2" @default.
- W2074992743 cites W1250812676 @default.
- W2074992743 cites W1492879782 @default.
- W2074992743 cites W1560781944 @default.
- W2074992743 cites W1598998194 @default.
- W2074992743 cites W1601873036 @default.
- W2074992743 cites W1754722913 @default.
- W2074992743 cites W1907110586 @default.
- W2074992743 cites W1933881136 @default.
- W2074992743 cites W1964579181 @default.
- W2074992743 cites W1969034370 @default.
- W2074992743 cites W1975898157 @default.
- W2074992743 cites W1979027806 @default.
- W2074992743 cites W1989228071 @default.
- W2074992743 cites W1990516841 @default.
- W2074992743 cites W2005189737 @default.
- W2074992743 cites W2008422889 @default.
- W2074992743 cites W2014307956 @default.
- W2074992743 cites W2014587815 @default.
- W2074992743 cites W2019760369 @default.
- W2074992743 cites W2020233019 @default.
- W2074992743 cites W2036123452 @default.
- W2074992743 cites W2039358229 @default.
- W2074992743 cites W2042183720 @default.
- W2074992743 cites W2046345458 @default.
- W2074992743 cites W2055370880 @default.
- W2074992743 cites W2060538012 @default.
- W2074992743 cites W2063015800 @default.
- W2074992743 cites W2063912602 @default.
- W2074992743 cites W2067000579 @default.
- W2074992743 cites W2070282050 @default.
- W2074992743 cites W2071818252 @default.
- W2074992743 cites W2073439264 @default.
- W2074992743 cites W2077475973 @default.
- W2074992743 cites W2080435414 @default.
- W2074992743 cites W2085140159 @default.
- W2074992743 cites W2088822716 @default.
- W2074992743 cites W2089170484 @default.
- W2074992743 cites W2089623038 @default.
- W2074992743 cites W2105746559 @default.
- W2074992743 cites W2109946302 @default.
- W2074992743 cites W2111778006 @default.
- W2074992743 cites W2114460420 @default.
- W2074992743 cites W2115104338 @default.
- W2074992743 cites W2116908725 @default.
- W2074992743 cites W2123951853 @default.
- W2074992743 cites W2150172003 @default.
- W2074992743 cites W2161340336 @default.
- W2074992743 cites W2162049443 @default.
- W2074992743 cites W2281196102 @default.
- W2074992743 doi "https://doi.org/10.1074/jbc.m209714200" @default.
- W2074992743 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12409291" @default.
- W2074992743 hasPublicationYear "2003" @default.
- W2074992743 type Work @default.
- W2074992743 sameAs 2074992743 @default.
- W2074992743 citedByCount "69" @default.
- W2074992743 countsByYear W20749927432012 @default.
- W2074992743 countsByYear W20749927432013 @default.
- W2074992743 countsByYear W20749927432014 @default.
- W2074992743 countsByYear W20749927432015 @default.
- W2074992743 countsByYear W20749927432016 @default.
- W2074992743 countsByYear W20749927432017 @default.
- W2074992743 countsByYear W20749927432018 @default.
- W2074992743 countsByYear W20749927432019 @default.
- W2074992743 countsByYear W20749927432020 @default.
- W2074992743 countsByYear W20749927432021 @default.
- W2074992743 countsByYear W20749927432022 @default.
- W2074992743 crossrefType "journal-article" @default.
- W2074992743 hasAuthorship W2074992743A5012045946 @default.
- W2074992743 hasAuthorship W2074992743A5027781657 @default.
- W2074992743 hasAuthorship W2074992743A5048464313 @default.
- W2074992743 hasBestOaLocation W20749927431 @default.
- W2074992743 hasConcept C121332964 @default.
- W2074992743 hasConcept C12294094 @default.
- W2074992743 hasConcept C152568617 @default.
- W2074992743 hasConcept C183786373 @default.
- W2074992743 hasConcept C185544564 @default.
- W2074992743 hasConcept C185592680 @default.
- W2074992743 hasConcept C2779222958 @default.
- W2074992743 hasConcept C53645450 @default.
- W2074992743 hasConcept C55493867 @default.
- W2074992743 hasConcept C62478195 @default.
- W2074992743 hasConcept C86803240 @default.
- W2074992743 hasConcept C95444343 @default.
- W2074992743 hasConceptScore W2074992743C121332964 @default.
- W2074992743 hasConceptScore W2074992743C12294094 @default.
- W2074992743 hasConceptScore W2074992743C152568617 @default.
- W2074992743 hasConceptScore W2074992743C183786373 @default.
- W2074992743 hasConceptScore W2074992743C185544564 @default.
- W2074992743 hasConceptScore W2074992743C185592680 @default.
- W2074992743 hasConceptScore W2074992743C2779222958 @default.