Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075092060> ?p ?o ?g. }
- W2075092060 endingPage "167" @default.
- W2075092060 startingPage "152" @default.
- W2075092060 abstract "Background. The use of chemotherapeutic drugs in combination with radiotherapy has become a common strategy for the treatment of advanced cancer. Solid evidence exists showing that chemotherapy administered during the course of radiotherapy (concurrent chemoradiotherapy) increases both local tumor control and patient survival in a number of cancer sites, including head and neck cancer. These therapy improvements, however, have been achieved at the expense of considerable toxicity, which underscores the need for further improvements. Methods. The current status of chemoradiotherapy clinical trials for head and neck cancer and research on the emerging treatment improvements were reviewed. A review of potential treatment improvement strategies focused on preclinical investigations on newer chemotherapeutic agents, notably taxanes and nucleoside analogues, as well as on molecular targets such as epidermal growth factor receptor (EGFR) or cyclooxygenase-2 (COX-2) enzyme. Results. Concurrent, but not induction (drugs given before radiotherapy), chemoradiotherapy improves locoregional tumor control and survival benefit in head and neck carcinoma relative to radiotherapy alone. In comparison, both concurrent and induction chemoradiotherapy showed therapeutic advantage over radiotherapy alone in the treatment of lung cancer. These therapeutic improvements were achieved with standard chemotherapeutic drugs, most commonly cisplatin-based chemotherapy. Biologically, chemotherapy interacts with radiation through a number of mechanisms, including inhibition of cellular repair, cell cycle effects, and inhibition of tumor cell regeneration. Potential avenues emerged to further improve chemoradiotherapy. One of these involves the newer chemotherapeutic agents, taxanes and nucleoside analogues, which in preclinical studies exhibited strong tumor radiosensitization and therapeutic gain. The clinical benefit of these agents is currently under testing. Another approach for improvement of chemoradiotherapy consists of inhibiting molecules selectively or preferentially expressed on tumor cells, such as EGFR and COX-2, both shown to render cellular resistance to drugs or radiation. Agents that selectively inhibit these molecules are becoming available at a rapid rate, and many of them have been shown in preclinical testing to be highly effective in improving tumor radioresponse or chemoresponse without affecting normal tissues. Conclusions. Concurrent chemoradiotherapy, using standard chemotherapeutic agents, has emerged as an effective treatment for advanced cancer, but unfortunately at the expense of considerable increase in normal tissue toxicity. There are a number of potential emerging treatment strategies to further improve chemoradiotherapy. One consists of using newer chemotherapeutic drugs, which in preclinical studies are potent enhancers of tumor radioresponse. Another approach consists of targeting EGFR or COX-2 with selective inhibitors of these molecules. © 2003 Wiley Periodicals, Inc. Head Neck 25:152–167, 2003" @default.
- W2075092060 created "2016-06-24" @default.
- W2075092060 creator A5003374263 @default.
- W2075092060 creator A5012911897 @default.
- W2075092060 creator A5037297048 @default.
- W2075092060 creator A5086483620 @default.
- W2075092060 date "2002-12-31" @default.
- W2075092060 modified "2023-10-14" @default.
- W2075092060 title "Chemoradiotherapy: Emerging treatment improvement strategies" @default.
- W2075092060 cites W1862136029 @default.
- W2075092060 cites W1883860222 @default.
- W2075092060 cites W1919038606 @default.
- W2075092060 cites W1930978022 @default.
- W2075092060 cites W1944220675 @default.
- W2075092060 cites W1968785826 @default.
- W2075092060 cites W1971867974 @default.
- W2075092060 cites W1971903979 @default.
- W2075092060 cites W1978616559 @default.
- W2075092060 cites W1983387455 @default.
- W2075092060 cites W1986965946 @default.
- W2075092060 cites W1990667186 @default.
- W2075092060 cites W1992566027 @default.
- W2075092060 cites W1998526204 @default.
- W2075092060 cites W2000133585 @default.
- W2075092060 cites W2006075027 @default.
- W2075092060 cites W2013436421 @default.
- W2075092060 cites W2014145691 @default.
- W2075092060 cites W2018070162 @default.
- W2075092060 cites W2019926572 @default.
- W2075092060 cites W2025671634 @default.
- W2075092060 cites W2031507616 @default.
- W2075092060 cites W2039501259 @default.
- W2075092060 cites W2041310709 @default.
- W2075092060 cites W2042913513 @default.
- W2075092060 cites W2048454485 @default.
- W2075092060 cites W2054543751 @default.
- W2075092060 cites W2056198230 @default.
- W2075092060 cites W2062248834 @default.
- W2075092060 cites W2065057508 @default.
- W2075092060 cites W2065627725 @default.
- W2075092060 cites W2071029921 @default.
- W2075092060 cites W2076211846 @default.
- W2075092060 cites W2081174475 @default.
- W2075092060 cites W2082030662 @default.
- W2075092060 cites W2084483418 @default.
- W2075092060 cites W2087604644 @default.
- W2075092060 cites W2088213837 @default.
- W2075092060 cites W2105150213 @default.
- W2075092060 cites W2115875299 @default.
- W2075092060 cites W2118170166 @default.
- W2075092060 cites W2120850551 @default.
- W2075092060 cites W2138310931 @default.
- W2075092060 cites W2139554459 @default.
- W2075092060 cites W2146148650 @default.
- W2075092060 cites W2146534320 @default.
- W2075092060 cites W2151415400 @default.
- W2075092060 cites W2152609192 @default.
- W2075092060 cites W2155053061 @default.
- W2075092060 cites W2164792557 @default.
- W2075092060 cites W2312703485 @default.
- W2075092060 cites W2317448174 @default.
- W2075092060 cites W2324392028 @default.
- W2075092060 cites W2331395194 @default.
- W2075092060 cites W2333908381 @default.
- W2075092060 cites W2410680135 @default.
- W2075092060 cites W4256239065 @default.
- W2075092060 doi "https://doi.org/10.1002/hed.10232" @default.
- W2075092060 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12509799" @default.
- W2075092060 hasPublicationYear "2002" @default.
- W2075092060 type Work @default.
- W2075092060 sameAs 2075092060 @default.
- W2075092060 citedByCount "97" @default.
- W2075092060 countsByYear W20750920602012 @default.
- W2075092060 countsByYear W20750920602013 @default.
- W2075092060 countsByYear W20750920602015 @default.
- W2075092060 countsByYear W20750920602016 @default.
- W2075092060 countsByYear W20750920602017 @default.
- W2075092060 countsByYear W20750920602018 @default.
- W2075092060 countsByYear W20750920602020 @default.
- W2075092060 countsByYear W20750920602021 @default.
- W2075092060 countsByYear W20750920602022 @default.
- W2075092060 countsByYear W20750920602023 @default.
- W2075092060 crossrefType "journal-article" @default.
- W2075092060 hasAuthorship W2075092060A5003374263 @default.
- W2075092060 hasAuthorship W2075092060A5012911897 @default.
- W2075092060 hasAuthorship W2075092060A5037297048 @default.
- W2075092060 hasAuthorship W2075092060A5086483620 @default.
- W2075092060 hasConcept C121608353 @default.
- W2075092060 hasConcept C126322002 @default.
- W2075092060 hasConcept C143998085 @default.
- W2075092060 hasConcept C2776530083 @default.
- W2075092060 hasConcept C2776611710 @default.
- W2075092060 hasConcept C2776694085 @default.
- W2075092060 hasConcept C2778239845 @default.
- W2075092060 hasConcept C2778424827 @default.
- W2075092060 hasConcept C502942594 @default.
- W2075092060 hasConcept C509974204 @default.
- W2075092060 hasConcept C71924100 @default.