Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075101818> ?p ?o ?g. }
- W2075101818 abstract "In this paper, we formulate the partially linear single-index models as bi-index dimension reduction models for the purpose of identifying significant covariates in both the linear part and the single-index part through only one combined index in a dimension reduction approach. This is different from all existing dimension reduction methods in the literature, which in general identify two basis directions in the subspace spanned by the parameter vectors of interest, rather than the two parameter vectors themselves. This approach makes the identification and the subsequent estimation and variable selection easier than existing methods for multi-index models. When the number of parameters diverges with the sample size, we then adopt coordinate-independent sparse estimation procedure to select significant covariates and estimate the corresponding parameters. The resulting sparse dimension reduction estimators are shown to be consistent and asymptotically normal with the oracle property. Simulations are conducted to evaluate the performance of the proposed method, and a real data set is analysed for an illustration." @default.
- W2075101818 created "2016-06-24" @default.
- W2075101818 creator A5000740437 @default.
- W2075101818 creator A5020692924 @default.
- W2075101818 creator A5085142676 @default.
- W2075101818 creator A5085374974 @default.
- W2075101818 date "2012-01-01" @default.
- W2075101818 modified "2023-09-25" @default.
- W2075101818 title "A dimension reduction based approach for estimation and variable selection in partially linear single-index models with high-dimensional covariates" @default.
- W2075101818 cites W135795571 @default.
- W2075101818 cites W1498947193 @default.
- W2075101818 cites W1913804012 @default.
- W2075101818 cites W1964173605 @default.
- W2075101818 cites W1969640518 @default.
- W2075101818 cites W1978930761 @default.
- W2075101818 cites W1981638497 @default.
- W2075101818 cites W1984764931 @default.
- W2075101818 cites W1987204917 @default.
- W2075101818 cites W1988686426 @default.
- W2075101818 cites W2009314534 @default.
- W2075101818 cites W2012350248 @default.
- W2075101818 cites W2014360396 @default.
- W2075101818 cites W2020082788 @default.
- W2075101818 cites W2024139929 @default.
- W2075101818 cites W2029800393 @default.
- W2075101818 cites W2032460509 @default.
- W2075101818 cites W2034404875 @default.
- W2075101818 cites W2035235892 @default.
- W2075101818 cites W2036876646 @default.
- W2075101818 cites W2053225089 @default.
- W2075101818 cites W2060170493 @default.
- W2075101818 cites W2066740458 @default.
- W2075101818 cites W2074682976 @default.
- W2075101818 cites W2077083909 @default.
- W2075101818 cites W2080726496 @default.
- W2075101818 cites W2080749331 @default.
- W2075101818 cites W2085143070 @default.
- W2075101818 cites W2086014844 @default.
- W2075101818 cites W2086067392 @default.
- W2075101818 cites W2093701508 @default.
- W2075101818 cites W2093738981 @default.
- W2075101818 cites W2093994886 @default.
- W2075101818 cites W2095296627 @default.
- W2075101818 cites W2110999708 @default.
- W2075101818 cites W2129159757 @default.
- W2075101818 cites W2136175429 @default.
- W2075101818 cites W2144405862 @default.
- W2075101818 cites W2156529323 @default.
- W2075101818 cites W2171050905 @default.
- W2075101818 cites W2593996946 @default.
- W2075101818 cites W27605680 @default.
- W2075101818 cites W2797333853 @default.
- W2075101818 cites W3098880893 @default.
- W2075101818 cites W3099609308 @default.
- W2075101818 cites W3101788651 @default.
- W2075101818 cites W3105513009 @default.
- W2075101818 cites W4256234331 @default.
- W2075101818 doi "https://doi.org/10.1214/12-ejs744" @default.
- W2075101818 hasPublicationYear "2012" @default.
- W2075101818 type Work @default.
- W2075101818 sameAs 2075101818 @default.
- W2075101818 citedByCount "10" @default.
- W2075101818 countsByYear W20751018182013 @default.
- W2075101818 countsByYear W20751018182014 @default.
- W2075101818 countsByYear W20751018182015 @default.
- W2075101818 countsByYear W20751018182016 @default.
- W2075101818 countsByYear W20751018182018 @default.
- W2075101818 countsByYear W20751018182019 @default.
- W2075101818 crossrefType "journal-article" @default.
- W2075101818 hasAuthorship W2075101818A5000740437 @default.
- W2075101818 hasAuthorship W2075101818A5020692924 @default.
- W2075101818 hasAuthorship W2075101818A5085142676 @default.
- W2075101818 hasAuthorship W2075101818A5085374974 @default.
- W2075101818 hasBestOaLocation W20751018181 @default.
- W2075101818 hasConcept C105795698 @default.
- W2075101818 hasConcept C111335779 @default.
- W2075101818 hasConcept C114614502 @default.
- W2075101818 hasConcept C119043178 @default.
- W2075101818 hasConcept C126255220 @default.
- W2075101818 hasConcept C134306372 @default.
- W2075101818 hasConcept C148483581 @default.
- W2075101818 hasConcept C154945302 @default.
- W2075101818 hasConcept C163175372 @default.
- W2075101818 hasConcept C185429906 @default.
- W2075101818 hasConcept C2524010 @default.
- W2075101818 hasConcept C27931671 @default.
- W2075101818 hasConcept C32834561 @default.
- W2075101818 hasConcept C33676613 @default.
- W2075101818 hasConcept C33923547 @default.
- W2075101818 hasConcept C41008148 @default.
- W2075101818 hasConcept C41341539 @default.
- W2075101818 hasConcept C70518039 @default.
- W2075101818 hasConcept C83546350 @default.
- W2075101818 hasConcept C93959086 @default.
- W2075101818 hasConceptScore W2075101818C105795698 @default.
- W2075101818 hasConceptScore W2075101818C111335779 @default.
- W2075101818 hasConceptScore W2075101818C114614502 @default.
- W2075101818 hasConceptScore W2075101818C119043178 @default.
- W2075101818 hasConceptScore W2075101818C126255220 @default.
- W2075101818 hasConceptScore W2075101818C134306372 @default.