Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075156900> ?p ?o ?g. }
- W2075156900 endingPage "3143" @default.
- W2075156900 startingPage "3131" @default.
- W2075156900 abstract "Suites of depleted MORB glasses from the fast-spreading Pacific-Nazca Ridge at 28°S and 32°S and the slow-spreading eastern boundary of the Juan Fernandez microplate were analyzed for chlorine by electron microprobe. Cl contents of primitive MORB are about 20–50 ppm, similar to values reported previously for primitive MORB from the Mid-Atlantic Ridge (MAR). Cl increases steadily with decreasing MgO to 1100 ppm in evolved MORB (FeTi basalts). FeTi basalts can be related to primitive magmas by a maximum of 67% fractional crystallization based on major element modelling. The Cl concentrations in FeTi basalts exceed by a factor of 5 to 10 the amounts that can be generated by fractional crystallization of the primitive magmas. An additional process besides crystallization must be contributing the excess Cl. FeTi basalts also contain more H 2 O than can be produced by fractional crystallization of a primitive parent. The H 2 O Cl ratio of the hypothetical additional component that is necessary to account for the excess Cl and H 2 O in FeTi basalts is 1–6 and rules out direct addition of seawater to the magma chamber. Assimilation of hydrothermally altered wall rocks of the magma chamber most likely provides the extra Cl and H 2 O. Selective melting or breakdown of amphibole and incorporation of Cl-rich brine contained in the wall rocks may be important processes. Bulk assimilation is less likely because the Cl content of altered crust is too low to generate the excess Cl unless unrealistically large amounts of assimilation are invoked. A magmatic source for the additional Cl and H 2 O cannot be ruled out on geochemical grounds but is physically unrealistic because it requires that large volumes of magma have crystallized and exsolved a Cl-rich vapor phase that has somehow migrated to a small magma chamber. Excess Cl in evolved magmas (i.e., Cl overenrichment) is best developed in evolved MORB from propagating or overlapping spreading centers such as the Galapagos Spreading Center at 85°W and 95°W and the west ridge of the Juan Fernandez microplate. Cl overenrichment has not been observed on slow-spreading ridges including the eastern ridge of the Juan Fernandez microplate, the Southwest Indian Ridge, and the mid-Atlantic Ridge. The existence of high-Cl magmas implies that some of the Cl-rich mineralization observed in deep crustal sections and ophiolites could be due to exsolved magmatic volatiles. The assimilation of hydrothermally altered material could influence the concentration and isotopic ratios of other elements which have low abundances in MORB relative to seawater." @default.
- W2075156900 created "2016-06-24" @default.
- W2075156900 creator A5009703426 @default.
- W2075156900 creator A5085661740 @default.
- W2075156900 date "1989-12-01" @default.
- W2075156900 modified "2023-10-02" @default.
- W2075156900 title "Chlorine in mid-ocean ridge magmas: Evidence for assimilation of seawater-influenced components" @default.
- W2075156900 cites W1963794532 @default.
- W2075156900 cites W1964315624 @default.
- W2075156900 cites W1973761344 @default.
- W2075156900 cites W1977664265 @default.
- W2075156900 cites W1979282607 @default.
- W2075156900 cites W1979371396 @default.
- W2075156900 cites W1979965872 @default.
- W2075156900 cites W1985027029 @default.
- W2075156900 cites W1993160428 @default.
- W2075156900 cites W1993454778 @default.
- W2075156900 cites W1994723472 @default.
- W2075156900 cites W2005476165 @default.
- W2075156900 cites W2012316671 @default.
- W2075156900 cites W2013138018 @default.
- W2075156900 cites W2014502918 @default.
- W2075156900 cites W2015467402 @default.
- W2075156900 cites W2016917893 @default.
- W2075156900 cites W2017616334 @default.
- W2075156900 cites W2017891611 @default.
- W2075156900 cites W2020197462 @default.
- W2075156900 cites W2023114522 @default.
- W2075156900 cites W2024307163 @default.
- W2075156900 cites W2024575502 @default.
- W2075156900 cites W2025492889 @default.
- W2075156900 cites W2025614494 @default.
- W2075156900 cites W2030936724 @default.
- W2075156900 cites W2031348196 @default.
- W2075156900 cites W2034059258 @default.
- W2075156900 cites W2035862400 @default.
- W2075156900 cites W2039322458 @default.
- W2075156900 cites W2042381205 @default.
- W2075156900 cites W2043910799 @default.
- W2075156900 cites W2044243784 @default.
- W2075156900 cites W2045064243 @default.
- W2075156900 cites W2047730854 @default.
- W2075156900 cites W2048128449 @default.
- W2075156900 cites W2050494583 @default.
- W2075156900 cites W2055826264 @default.
- W2075156900 cites W2056814211 @default.
- W2075156900 cites W2059236429 @default.
- W2075156900 cites W2060246142 @default.
- W2075156900 cites W2062409311 @default.
- W2075156900 cites W2065059281 @default.
- W2075156900 cites W2069465134 @default.
- W2075156900 cites W2073102511 @default.
- W2075156900 cites W2073889251 @default.
- W2075156900 cites W2075845557 @default.
- W2075156900 cites W2079655620 @default.
- W2075156900 cites W2081233182 @default.
- W2075156900 cites W2088480584 @default.
- W2075156900 cites W2088625233 @default.
- W2075156900 cites W2091429053 @default.
- W2075156900 cites W2092140298 @default.
- W2075156900 cites W2097094305 @default.
- W2075156900 cites W2098011947 @default.
- W2075156900 cites W2117761731 @default.
- W2075156900 cites W2119949381 @default.
- W2075156900 cites W2121667558 @default.
- W2075156900 cites W2123337122 @default.
- W2075156900 cites W2126455993 @default.
- W2075156900 cites W2317036328 @default.
- W2075156900 cites W2318934336 @default.
- W2075156900 cites W2328505494 @default.
- W2075156900 cites W2330716625 @default.
- W2075156900 cites W2335043079 @default.
- W2075156900 cites W2912020849 @default.
- W2075156900 doi "https://doi.org/10.1016/0016-7037(89)90094-x" @default.
- W2075156900 hasPublicationYear "1989" @default.
- W2075156900 type Work @default.
- W2075156900 sameAs 2075156900 @default.
- W2075156900 citedByCount "201" @default.
- W2075156900 countsByYear W20751569002012 @default.
- W2075156900 countsByYear W20751569002013 @default.
- W2075156900 countsByYear W20751569002014 @default.
- W2075156900 countsByYear W20751569002015 @default.
- W2075156900 countsByYear W20751569002016 @default.
- W2075156900 countsByYear W20751569002017 @default.
- W2075156900 countsByYear W20751569002018 @default.
- W2075156900 countsByYear W20751569002019 @default.
- W2075156900 countsByYear W20751569002020 @default.
- W2075156900 countsByYear W20751569002021 @default.
- W2075156900 countsByYear W20751569002022 @default.
- W2075156900 countsByYear W20751569002023 @default.
- W2075156900 crossrefType "journal-article" @default.
- W2075156900 hasAuthorship W2075156900A5009703426 @default.
- W2075156900 hasAuthorship W2075156900A5085661740 @default.
- W2075156900 hasConcept C11872896 @default.
- W2075156900 hasConcept C120806208 @default.
- W2075156900 hasConcept C127313418 @default.
- W2075156900 hasConcept C138411078 @default.
- W2075156900 hasConcept C161509811 @default.