Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075241504> ?p ?o ?g. }
- W2075241504 endingPage "88" @default.
- W2075241504 startingPage "77" @default.
- W2075241504 abstract "While the nonlinear mapping from the input space to the feature space is central in kernel methods, the reverse mapping from the feature space back to the input space is also of primary interest. This is the case in many applications, including kernel principal component analysis (PCA) for signal and image denoising. Unfortunately, it turns out that the reverse mapping generally does not exist and only a few elements in the feature space have a valid preimage in the input space. The preimage problem consists of finding an approximate solution by identifying data in the input space based on their corresponding features in the high dimensional feature space. It is essentially a dimensionality-reduction problem, and both have been intimately connected in their historical evolution, as studied in this article." @default.
- W2075241504 created "2016-06-24" @default.
- W2075241504 creator A5009808175 @default.
- W2075241504 creator A5074267243 @default.
- W2075241504 date "2011-03-01" @default.
- W2075241504 modified "2023-10-15" @default.
- W2075241504 title "Preimage Problem in Kernel-Based Machine Learning" @default.
- W2075241504 cites W1498873563 @default.
- W2075241504 cites W1506263486 @default.
- W2075241504 cites W1510073064 @default.
- W2075241504 cites W1848594422 @default.
- W2075241504 cites W1971086125 @default.
- W2075241504 cites W1986280275 @default.
- W2075241504 cites W1988914719 @default.
- W2075241504 cites W2006805041 @default.
- W2075241504 cites W2014158063 @default.
- W2075241504 cites W2015904350 @default.
- W2075241504 cites W2027582332 @default.
- W2075241504 cites W2053186076 @default.
- W2075241504 cites W2089503001 @default.
- W2075241504 cites W2124178852 @default.
- W2075241504 cites W2133396101 @default.
- W2075241504 cites W2139199764 @default.
- W2075241504 cites W2139320579 @default.
- W2075241504 cites W2140095548 @default.
- W2075241504 cites W2141075465 @default.
- W2075241504 cites W2141407058 @default.
- W2075241504 cites W2142387771 @default.
- W2075241504 cites W2150796457 @default.
- W2075241504 cites W2153557925 @default.
- W2075241504 cites W2156909104 @default.
- W2075241504 cites W2165700285 @default.
- W2075241504 cites W2169945149 @default.
- W2075241504 cites W2170076406 @default.
- W2075241504 cites W2479500547 @default.
- W2075241504 cites W4244829582 @default.
- W2075241504 cites W4246920291 @default.
- W2075241504 cites W4298876635 @default.
- W2075241504 cites W4986281 @default.
- W2075241504 doi "https://doi.org/10.1109/msp.2010.939747" @default.
- W2075241504 hasPublicationYear "2011" @default.
- W2075241504 type Work @default.
- W2075241504 sameAs 2075241504 @default.
- W2075241504 citedByCount "77" @default.
- W2075241504 countsByYear W20752415042012 @default.
- W2075241504 countsByYear W20752415042013 @default.
- W2075241504 countsByYear W20752415042014 @default.
- W2075241504 countsByYear W20752415042015 @default.
- W2075241504 countsByYear W20752415042016 @default.
- W2075241504 countsByYear W20752415042017 @default.
- W2075241504 countsByYear W20752415042018 @default.
- W2075241504 countsByYear W20752415042019 @default.
- W2075241504 countsByYear W20752415042020 @default.
- W2075241504 countsByYear W20752415042021 @default.
- W2075241504 countsByYear W20752415042022 @default.
- W2075241504 countsByYear W20752415042023 @default.
- W2075241504 crossrefType "journal-article" @default.
- W2075241504 hasAuthorship W2075241504A5009808175 @default.
- W2075241504 hasAuthorship W2075241504A5074267243 @default.
- W2075241504 hasBestOaLocation W20752415042 @default.
- W2075241504 hasConcept C111030470 @default.
- W2075241504 hasConcept C111919701 @default.
- W2075241504 hasConcept C11413529 @default.
- W2075241504 hasConcept C118615104 @default.
- W2075241504 hasConcept C122280245 @default.
- W2075241504 hasConcept C12267149 @default.
- W2075241504 hasConcept C138885662 @default.
- W2075241504 hasConcept C153180895 @default.
- W2075241504 hasConcept C154945302 @default.
- W2075241504 hasConcept C182335926 @default.
- W2075241504 hasConcept C27438332 @default.
- W2075241504 hasConcept C2776401178 @default.
- W2075241504 hasConcept C2778572836 @default.
- W2075241504 hasConcept C2988382989 @default.
- W2075241504 hasConcept C33923547 @default.
- W2075241504 hasConcept C41008148 @default.
- W2075241504 hasConcept C41895202 @default.
- W2075241504 hasConcept C70518039 @default.
- W2075241504 hasConcept C74193536 @default.
- W2075241504 hasConcept C83665646 @default.
- W2075241504 hasConceptScore W2075241504C111030470 @default.
- W2075241504 hasConceptScore W2075241504C111919701 @default.
- W2075241504 hasConceptScore W2075241504C11413529 @default.
- W2075241504 hasConceptScore W2075241504C118615104 @default.
- W2075241504 hasConceptScore W2075241504C122280245 @default.
- W2075241504 hasConceptScore W2075241504C12267149 @default.
- W2075241504 hasConceptScore W2075241504C138885662 @default.
- W2075241504 hasConceptScore W2075241504C153180895 @default.
- W2075241504 hasConceptScore W2075241504C154945302 @default.
- W2075241504 hasConceptScore W2075241504C182335926 @default.
- W2075241504 hasConceptScore W2075241504C27438332 @default.
- W2075241504 hasConceptScore W2075241504C2776401178 @default.
- W2075241504 hasConceptScore W2075241504C2778572836 @default.
- W2075241504 hasConceptScore W2075241504C2988382989 @default.
- W2075241504 hasConceptScore W2075241504C33923547 @default.
- W2075241504 hasConceptScore W2075241504C41008148 @default.
- W2075241504 hasConceptScore W2075241504C41895202 @default.
- W2075241504 hasConceptScore W2075241504C70518039 @default.