Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075562719> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2075562719 abstract "In this paper, we have developed a combined method utilizing morphological operations, a finite generalized Gaussian mixture (FGGM) modeling, and a contextual Bayesian relaxation labeling technique (CBRL) to enhance and extract suspicious masses. A feature space is constructed based on multiple feature extraction from the regions of interest (ROIs). Finally, a multi-modular neural network (MMNN) is employed to distinguish true masses from non-masses. We have applied these methods to test our mammogram database. The true masses in the database were identified by a radiologist with biopsy reports. The results demonstrated that all the areas of suspicious masses in mammograms were extracted in the prescan step using the proposed segmentation procedure. We found that 6 - 15 suspected masses per mammogram were detected and required further evaluation. We also found that the MMNN can reduce the number of suspicious masses with a sensitivity of 84% at 1 - 2 false positive (FP) per mammogram based on the database containing 46 mammograms (23 of them have biopsy proven masses). In conclusion, the experimental results indicate that morphological filtering combined with FGGM model-based segmentation is an effective way to extract mammographic suspicious mass patterns. Compared with conventional neural networks, the probabilistic MMNN can lead to a more efficient learning algorithm and can provide more understanding in the analysis of the distribution patterns of multiple features extracted from the suspicious masses.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only." @default.
- W2075562719 created "2016-06-24" @default.
- W2075562719 creator A5035045784 @default.
- W2075562719 creator A5071503238 @default.
- W2075562719 creator A5074947237 @default.
- W2075562719 creator A5079432295 @default.
- W2075562719 creator A5082730464 @default.
- W2075562719 date "1997-04-25" @default.
- W2075562719 modified "2023-09-23" @default.
- W2075562719 title "<title>Mammographic mass detection by stochastic modeling and a multimodular neural network</title>" @default.
- W2075562719 doi "https://doi.org/10.1117/12.274134" @default.
- W2075562719 hasPublicationYear "1997" @default.
- W2075562719 type Work @default.
- W2075562719 sameAs 2075562719 @default.
- W2075562719 citedByCount "0" @default.
- W2075562719 crossrefType "proceedings-article" @default.
- W2075562719 hasAuthorship W2075562719A5035045784 @default.
- W2075562719 hasAuthorship W2075562719A5071503238 @default.
- W2075562719 hasAuthorship W2075562719A5074947237 @default.
- W2075562719 hasAuthorship W2075562719A5079432295 @default.
- W2075562719 hasAuthorship W2075562719A5082730464 @default.
- W2075562719 hasConcept C121608353 @default.
- W2075562719 hasConcept C126322002 @default.
- W2075562719 hasConcept C138885662 @default.
- W2075562719 hasConcept C153180895 @default.
- W2075562719 hasConcept C154945302 @default.
- W2075562719 hasConcept C2776401178 @default.
- W2075562719 hasConcept C2780472235 @default.
- W2075562719 hasConcept C41008148 @default.
- W2075562719 hasConcept C41895202 @default.
- W2075562719 hasConcept C50644808 @default.
- W2075562719 hasConcept C52622490 @default.
- W2075562719 hasConcept C530470458 @default.
- W2075562719 hasConcept C71924100 @default.
- W2075562719 hasConcept C89600930 @default.
- W2075562719 hasConceptScore W2075562719C121608353 @default.
- W2075562719 hasConceptScore W2075562719C126322002 @default.
- W2075562719 hasConceptScore W2075562719C138885662 @default.
- W2075562719 hasConceptScore W2075562719C153180895 @default.
- W2075562719 hasConceptScore W2075562719C154945302 @default.
- W2075562719 hasConceptScore W2075562719C2776401178 @default.
- W2075562719 hasConceptScore W2075562719C2780472235 @default.
- W2075562719 hasConceptScore W2075562719C41008148 @default.
- W2075562719 hasConceptScore W2075562719C41895202 @default.
- W2075562719 hasConceptScore W2075562719C50644808 @default.
- W2075562719 hasConceptScore W2075562719C52622490 @default.
- W2075562719 hasConceptScore W2075562719C530470458 @default.
- W2075562719 hasConceptScore W2075562719C71924100 @default.
- W2075562719 hasConceptScore W2075562719C89600930 @default.
- W2075562719 hasLocation W20755627191 @default.
- W2075562719 hasOpenAccess W2075562719 @default.
- W2075562719 hasPrimaryLocation W20755627191 @default.
- W2075562719 hasRelatedWork W1492054812 @default.
- W2075562719 hasRelatedWork W1964034394 @default.
- W2075562719 hasRelatedWork W2006408184 @default.
- W2075562719 hasRelatedWork W2016104670 @default.
- W2075562719 hasRelatedWork W2017352979 @default.
- W2075562719 hasRelatedWork W2019784121 @default.
- W2075562719 hasRelatedWork W2023392037 @default.
- W2075562719 hasRelatedWork W2038037430 @default.
- W2075562719 hasRelatedWork W2086810279 @default.
- W2075562719 hasRelatedWork W2110044132 @default.
- W2075562719 hasRelatedWork W2138358654 @default.
- W2075562719 hasRelatedWork W2139031005 @default.
- W2075562719 hasRelatedWork W1551402309 @default.
- W2075562719 hasRelatedWork W1783775373 @default.
- W2075562719 hasRelatedWork W1890390536 @default.
- W2075562719 hasRelatedWork W1904712805 @default.
- W2075562719 hasRelatedWork W1927211475 @default.
- W2075562719 hasRelatedWork W1945000664 @default.
- W2075562719 hasRelatedWork W1954971285 @default.
- W2075562719 hasRelatedWork W2079152385 @default.
- W2075562719 isParatext "false" @default.
- W2075562719 isRetracted "false" @default.
- W2075562719 magId "2075562719" @default.
- W2075562719 workType "article" @default.