Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075633797> ?p ?o ?g. }
- W2075633797 abstract "Computer Vision algorithms make mistakes. In human-centric applications, some mistakes are more annoying to users than others. In order to design algorithms that minimize the annoyance to users, we need access to an annoyance or cost matrix that holds the annoyance of each type of mistake. Such matrices are not readily available, especially for a wide gamut of human-centric applications where annoyance is tied closely to human perception. To avoid having to conduct extensive user studies to gather the annoyance matrix for all possible mistakes, we propose predicting the annoyance of previously unseen mistakes by learning from example mistakes and their corresponding annoyance. We promote the use of attribute-based representations to transfer this knowledge of annoyance. Our experimental results with faces and scenes demonstrate that our approach can predict annoyance more accurately than baselines. We show that as a result, our approach makes less annoying mistakes in a real-world image retrieval application." @default.
- W2075633797 created "2016-06-24" @default.
- W2075633797 creator A5018145129 @default.
- W2075633797 creator A5035533954 @default.
- W2075633797 creator A5039899111 @default.
- W2075633797 creator A5050342343 @default.
- W2075633797 date "2014-06-01" @default.
- W2075633797 modified "2023-09-28" @default.
- W2075633797 title "Predicting User Annoyance Using Visual Attributes" @default.
- W2075633797 cites W1528802670 @default.
- W2075633797 cites W1566135517 @default.
- W2075633797 cites W1586283311 @default.
- W2075633797 cites W1599238028 @default.
- W2075633797 cites W1830239953 @default.
- W2075633797 cites W1969994895 @default.
- W2075633797 cites W1988421392 @default.
- W2075633797 cites W1996309403 @default.
- W2075633797 cites W2017814585 @default.
- W2075633797 cites W2033365921 @default.
- W2075633797 cites W2047221353 @default.
- W2075633797 cites W2066134726 @default.
- W2075633797 cites W2070148066 @default.
- W2075633797 cites W2076291620 @default.
- W2075633797 cites W2079716839 @default.
- W2075633797 cites W2080171500 @default.
- W2075633797 cites W2084435358 @default.
- W2075633797 cites W2089150756 @default.
- W2075633797 cites W2098411764 @default.
- W2075633797 cites W2103490241 @default.
- W2075633797 cites W2118979615 @default.
- W2075633797 cites W2120750550 @default.
- W2075633797 cites W2122528955 @default.
- W2075633797 cites W2125560515 @default.
- W2075633797 cites W2129156852 @default.
- W2075633797 cites W2134270519 @default.
- W2075633797 cites W2136507825 @default.
- W2075633797 cites W2147898188 @default.
- W2075633797 cites W2151509460 @default.
- W2075633797 cites W2153635508 @default.
- W2075633797 cites W2169177311 @default.
- W2075633797 cites W2294130536 @default.
- W2075633797 cites W2536626143 @default.
- W2075633797 cites W2541843346 @default.
- W2075633797 cites W2951342632 @default.
- W2075633797 cites W3143107425 @default.
- W2075633797 cites W48884151 @default.
- W2075633797 doi "https://doi.org/10.1109/cvpr.2014.464" @default.
- W2075633797 hasPublicationYear "2014" @default.
- W2075633797 type Work @default.
- W2075633797 sameAs 2075633797 @default.
- W2075633797 citedByCount "3" @default.
- W2075633797 countsByYear W20756337972015 @default.
- W2075633797 countsByYear W20756337972017 @default.
- W2075633797 countsByYear W20756337972019 @default.
- W2075633797 crossrefType "proceedings-article" @default.
- W2075633797 hasAuthorship W2075633797A5018145129 @default.
- W2075633797 hasAuthorship W2075633797A5035533954 @default.
- W2075633797 hasAuthorship W2075633797A5039899111 @default.
- W2075633797 hasAuthorship W2075633797A5050342343 @default.
- W2075633797 hasBestOaLocation W20756337972 @default.
- W2075633797 hasConcept C107457646 @default.
- W2075633797 hasConcept C154945302 @default.
- W2075633797 hasConcept C15744967 @default.
- W2075633797 hasConcept C169760540 @default.
- W2075633797 hasConcept C17744445 @default.
- W2075633797 hasConcept C178937217 @default.
- W2075633797 hasConcept C199539241 @default.
- W2075633797 hasConcept C26760741 @default.
- W2075633797 hasConcept C2777179996 @default.
- W2075633797 hasConcept C31972630 @default.
- W2075633797 hasConcept C41008148 @default.
- W2075633797 hasConcept C79018884 @default.
- W2075633797 hasConceptScore W2075633797C107457646 @default.
- W2075633797 hasConceptScore W2075633797C154945302 @default.
- W2075633797 hasConceptScore W2075633797C15744967 @default.
- W2075633797 hasConceptScore W2075633797C169760540 @default.
- W2075633797 hasConceptScore W2075633797C17744445 @default.
- W2075633797 hasConceptScore W2075633797C178937217 @default.
- W2075633797 hasConceptScore W2075633797C199539241 @default.
- W2075633797 hasConceptScore W2075633797C26760741 @default.
- W2075633797 hasConceptScore W2075633797C2777179996 @default.
- W2075633797 hasConceptScore W2075633797C31972630 @default.
- W2075633797 hasConceptScore W2075633797C41008148 @default.
- W2075633797 hasConceptScore W2075633797C79018884 @default.
- W2075633797 hasLocation W20756337971 @default.
- W2075633797 hasLocation W20756337972 @default.
- W2075633797 hasOpenAccess W2075633797 @default.
- W2075633797 hasPrimaryLocation W20756337971 @default.
- W2075633797 hasRelatedWork W1548274032 @default.
- W2075633797 hasRelatedWork W1587962376 @default.
- W2075633797 hasRelatedWork W1786967778 @default.
- W2075633797 hasRelatedWork W1883743240 @default.
- W2075633797 hasRelatedWork W2049248196 @default.
- W2075633797 hasRelatedWork W2057179844 @default.
- W2075633797 hasRelatedWork W2067112097 @default.
- W2075633797 hasRelatedWork W2087707690 @default.
- W2075633797 hasRelatedWork W2096544045 @default.
- W2075633797 hasRelatedWork W2107698128 @default.
- W2075633797 hasRelatedWork W2109945781 @default.
- W2075633797 hasRelatedWork W2117131282 @default.