Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075694579> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2075694579 abstract "Computer systems that can directly and accurately answer peoples' questions over a broad domain of human knowledge have been envisioned by scientists and writers since the advent of computers themselves. Open domain question answering holds tremendous promise for facilitating informed decision making over vast volumes of natural language content. Applications in business intelligence, healthcare, customer support, enterprise knowledge management, social computing, science and government would all benefit from deep language processing. The DeepQA project (www.ibm.com/deepqa) is aimed at illustrating how the advancement and integration of Natural Language Processing (NLP), Information Retrieval (IR), Machine Learning (ML), massively parallel computation and Knowledge Representation and Reasoning (KR&R) can greatly advance open-domain automatic Question Answering. An exciting proof-point in this challenge is to develop a computer system that can successfully compete against top human players at the Jeopardy! quiz show (www.jeopardy.com). Attaining champion-level performance Jeopardy! requires a computer to rapidly answer rich open-domain questions, and to predict its own performance on any given category/question. The system must deliver high degrees of precision and confidence over a very broad range of knowledge and natural language content and with a 3-second response time. To do this DeepQA generates, evidences and evaluates many competing hypotheses. A key to success is automatically learning and combining accurate confidences across an array of complex algorithms and over different dimensions of evidence. Accurate confidences are needed to know when to buzz in against your competitors and how much to bet. Critical for winning at Jeopardy!, High precision and accurate confidence computations are just as critical for providing real value in business settings where helping users focus on the right content sooner and with greater confidence can make all the difference. The need for speed and high precision demands a massively parallel compute platform capable of generating, evaluating and combing 1000's of hypotheses and their associated evidence. In this talk I will introduce the audience to the Jeopardy! Challenge and describe our technical approach and our progress on this grand-challenge problem." @default.
- W2075694579 created "2016-06-24" @default.
- W2075694579 creator A5073155779 @default.
- W2075694579 date "2010-09-11" @default.
- W2075694579 modified "2023-10-16" @default.
- W2075694579 title "Build Watson" @default.
- W2075694579 doi "https://doi.org/10.1145/1854273.1854275" @default.
- W2075694579 hasPublicationYear "2010" @default.
- W2075694579 type Work @default.
- W2075694579 sameAs 2075694579 @default.
- W2075694579 citedByCount "37" @default.
- W2075694579 countsByYear W20756945792012 @default.
- W2075694579 countsByYear W20756945792013 @default.
- W2075694579 countsByYear W20756945792014 @default.
- W2075694579 countsByYear W20756945792015 @default.
- W2075694579 countsByYear W20756945792016 @default.
- W2075694579 countsByYear W20756945792017 @default.
- W2075694579 countsByYear W20756945792018 @default.
- W2075694579 countsByYear W20756945792019 @default.
- W2075694579 countsByYear W20756945792020 @default.
- W2075694579 countsByYear W20756945792021 @default.
- W2075694579 countsByYear W20756945792022 @default.
- W2075694579 countsByYear W20756945792023 @default.
- W2075694579 crossrefType "proceedings-article" @default.
- W2075694579 hasAuthorship W2075694579A5073155779 @default.
- W2075694579 hasConcept C127576917 @default.
- W2075694579 hasConcept C134306372 @default.
- W2075694579 hasConcept C154945302 @default.
- W2075694579 hasConcept C162324750 @default.
- W2075694579 hasConcept C171250308 @default.
- W2075694579 hasConcept C187736073 @default.
- W2075694579 hasConcept C192562407 @default.
- W2075694579 hasConcept C195324797 @default.
- W2075694579 hasConcept C204321447 @default.
- W2075694579 hasConcept C207685749 @default.
- W2075694579 hasConcept C2522767166 @default.
- W2075694579 hasConcept C33923547 @default.
- W2075694579 hasConcept C36503486 @default.
- W2075694579 hasConcept C41008148 @default.
- W2075694579 hasConcept C44291984 @default.
- W2075694579 hasConcept C70388272 @default.
- W2075694579 hasConceptScore W2075694579C127576917 @default.
- W2075694579 hasConceptScore W2075694579C134306372 @default.
- W2075694579 hasConceptScore W2075694579C154945302 @default.
- W2075694579 hasConceptScore W2075694579C162324750 @default.
- W2075694579 hasConceptScore W2075694579C171250308 @default.
- W2075694579 hasConceptScore W2075694579C187736073 @default.
- W2075694579 hasConceptScore W2075694579C192562407 @default.
- W2075694579 hasConceptScore W2075694579C195324797 @default.
- W2075694579 hasConceptScore W2075694579C204321447 @default.
- W2075694579 hasConceptScore W2075694579C207685749 @default.
- W2075694579 hasConceptScore W2075694579C2522767166 @default.
- W2075694579 hasConceptScore W2075694579C33923547 @default.
- W2075694579 hasConceptScore W2075694579C36503486 @default.
- W2075694579 hasConceptScore W2075694579C41008148 @default.
- W2075694579 hasConceptScore W2075694579C44291984 @default.
- W2075694579 hasConceptScore W2075694579C70388272 @default.
- W2075694579 hasLocation W20756945791 @default.
- W2075694579 hasOpenAccess W2075694579 @default.
- W2075694579 hasPrimaryLocation W20756945791 @default.
- W2075694579 hasRelatedWork W1566366091 @default.
- W2075694579 hasRelatedWork W2099715052 @default.
- W2075694579 hasRelatedWork W2259406085 @default.
- W2075694579 hasRelatedWork W2908402521 @default.
- W2075694579 hasRelatedWork W3157284875 @default.
- W2075694579 hasRelatedWork W3209772662 @default.
- W2075694579 hasRelatedWork W4200629926 @default.
- W2075694579 hasRelatedWork W4213176082 @default.
- W2075694579 hasRelatedWork W4220955952 @default.
- W2075694579 hasRelatedWork W4249095395 @default.
- W2075694579 isParatext "false" @default.
- W2075694579 isRetracted "false" @default.
- W2075694579 magId "2075694579" @default.
- W2075694579 workType "article" @default.