Matches in SemOpenAlex for { <https://semopenalex.org/work/W207572286> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W207572286 abstract "Laplace's Equation and Faraday's Lines of Force T.N. Narasimhan Materials Science and Engineering, Environmental Science, Policy and Management Earth Sciences Division, Lawrence Berkeley National Laboratory University of California 210 Hearst Mining Building, Berkeley, Ca 94720-1760 tnnarasimhan@LBL.gov May 22, 2008 Abstract Boundary-value problems involve two dependent variables: a potential function, and a stream function. They can be approached in two mutually independent ways. The first, introduced by Laplace, involves spatial gradients at a point. Inspired by Faraday, Maxwell introduced the other, visualizing the flow domain as a collection of flow tubes and isopotential surfaces. Boundary-value problems intrinsically entail coupled treatment (or, equivalently, optimization) of potential and stream functions Historically, potential theory avoided the cumbersome optimization task through ingenious techniques such as conformal mapping and Green’s functions. Laplace’s point-based approach, and Maxwell’s global approach, each provides its own unique insights into boundary- value problems. Commonly, Laplace’s equation is solved either algebraically, or with approximate numerical methods. Maxwell’s geometry-based approach opens up novel possibilities of direct optimization, providing an independent logical basis for numerical models, rather than treating them as approximate solvers of the differential equation. Whereas points, gradients, and Darcy’s law are central to posing problems on the basis of Laplace’s approach, flow tubes, potential differences, and the mathematical form of Ohm’s law are central to posing them in natural coordinates oriented along flow paths. Besides being of philosophical interest, optimization algorithms can provide advantages that complement the power of classical numerical models. In the spirit of Maxwell, who eloquently spoke for a balance between abstract mathematical symbolism and observable attributes of concrete objects, this paper is an examination of the central ideas of the two approaches, and a reflection on how Maxwell’s integral visualization may be practically put to use in a world of digital computers. Page 1 of 25" @default.
- W207572286 created "2016-06-24" @default.
- W207572286 creator A5085688334 @default.
- W207572286 date "2008-06-20" @default.
- W207572286 modified "2023-09-28" @default.
- W207572286 title "Laplace's equation and Faraday's lines of force" @default.
- W207572286 hasPublicationYear "2008" @default.
- W207572286 type Work @default.
- W207572286 sameAs 207572286 @default.
- W207572286 citedByCount "0" @default.
- W207572286 crossrefType "journal-article" @default.
- W207572286 hasAuthorship W207572286A5085688334 @default.
- W207572286 hasConcept C121332964 @default.
- W207572286 hasConcept C134306372 @default.
- W207572286 hasConcept C14036430 @default.
- W207572286 hasConcept C140820882 @default.
- W207572286 hasConcept C182310444 @default.
- W207572286 hasConcept C18932819 @default.
- W207572286 hasConcept C200114574 @default.
- W207572286 hasConcept C208067445 @default.
- W207572286 hasConcept C2524010 @default.
- W207572286 hasConcept C28826006 @default.
- W207572286 hasConcept C33923547 @default.
- W207572286 hasConcept C38349280 @default.
- W207572286 hasConcept C41008148 @default.
- W207572286 hasConcept C70615421 @default.
- W207572286 hasConcept C78458016 @default.
- W207572286 hasConcept C86803240 @default.
- W207572286 hasConcept C97355855 @default.
- W207572286 hasConcept C97937538 @default.
- W207572286 hasConceptScore W207572286C121332964 @default.
- W207572286 hasConceptScore W207572286C134306372 @default.
- W207572286 hasConceptScore W207572286C14036430 @default.
- W207572286 hasConceptScore W207572286C140820882 @default.
- W207572286 hasConceptScore W207572286C182310444 @default.
- W207572286 hasConceptScore W207572286C18932819 @default.
- W207572286 hasConceptScore W207572286C200114574 @default.
- W207572286 hasConceptScore W207572286C208067445 @default.
- W207572286 hasConceptScore W207572286C2524010 @default.
- W207572286 hasConceptScore W207572286C28826006 @default.
- W207572286 hasConceptScore W207572286C33923547 @default.
- W207572286 hasConceptScore W207572286C38349280 @default.
- W207572286 hasConceptScore W207572286C41008148 @default.
- W207572286 hasConceptScore W207572286C70615421 @default.
- W207572286 hasConceptScore W207572286C78458016 @default.
- W207572286 hasConceptScore W207572286C86803240 @default.
- W207572286 hasConceptScore W207572286C97355855 @default.
- W207572286 hasConceptScore W207572286C97937538 @default.
- W207572286 hasLocation W2075722861 @default.
- W207572286 hasOpenAccess W207572286 @default.
- W207572286 hasPrimaryLocation W2075722861 @default.
- W207572286 hasRelatedWork W149830241 @default.
- W207572286 hasRelatedWork W1646309365 @default.
- W207572286 hasRelatedWork W1984320816 @default.
- W207572286 hasRelatedWork W2046438898 @default.
- W207572286 hasRelatedWork W2051960719 @default.
- W207572286 hasRelatedWork W2068847270 @default.
- W207572286 hasRelatedWork W2124759856 @default.
- W207572286 hasRelatedWork W2142799747 @default.
- W207572286 hasRelatedWork W2183661938 @default.
- W207572286 hasRelatedWork W2184175071 @default.
- W207572286 hasRelatedWork W2310237 @default.
- W207572286 hasRelatedWork W2411591918 @default.
- W207572286 hasRelatedWork W2503659851 @default.
- W207572286 hasRelatedWork W2604144558 @default.
- W207572286 hasRelatedWork W2996666851 @default.
- W207572286 hasRelatedWork W2998682250 @default.
- W207572286 hasRelatedWork W3014886719 @default.
- W207572286 hasRelatedWork W644903696 @default.
- W207572286 hasRelatedWork W67943145 @default.
- W207572286 hasRelatedWork W78506938 @default.
- W207572286 isParatext "false" @default.
- W207572286 isRetracted "false" @default.
- W207572286 magId "207572286" @default.
- W207572286 workType "article" @default.