Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075735493> ?p ?o ?g. }
- W2075735493 abstract "The transition from the polarized paramagnetic state to the antiferromagnetic phase in an applied external magnetic field has been investigated theoretically by linear spin-wave theory at T=0. Our analysis applies to spins arranged in a lattice of cubic symmetry. In addition to the Zeeman term, the Hamiltonian consists of bilinear interactions. Antiferromagnetic transition to a state described by an ordering vector Q is discussed in terms of softening of the corresponding spin-wave excitation in the paramagnetic phase. It is shown that the onset of antiferromagnetic order can be calculated by solving an eigenvalue problem. The smallest eigenvalue of the Fourier transformed 2ifmmodetimeselsetexttimesfi{}2 interaction matrix, which describes the spin-spin interactions in the plane perpendicular to B, determines ${mathit{B}}_{mathit{c}}$, Q, and the direction of the antiferromagnetic component. For sufficiently anisotropic spin-spin interactions, these quantities can depend on the direction of B with respect to the crystalline axes.However, when the spin structure shows an easy-plane anisotropy, which is possible for ordering vectors of the type Q=(h,0,0) and Q=(h,h,h), and for some vectors at the Brillouin-zone boundary, the direction of B has no such effect. The general results were first applied to investigate the stability of the easy-axis type-III antiferromagnetism of the fcc lattice, characterized by Q=ensuremath{pi}/a(1,1/2,0). It was shown that, if the spin-spin interactions are sufficiently anisotropic, type-III order becomes unstable against type-I order [Q=ensuremath{pi}/a(1,0,0)] when a strong enough field B is applied along a [111] crystalline axis. If the anisotropy is comparable to the isotropic next-nearest-neighbor coupling, like in ${mathrm{K}}_{2}$${mathrm{IrCl}}_{6}$, a high-field ordering vector, between the type-I and -III vectors, is predicted. As another application, the magnetic phase diagram of nuclear spins in copper was investigated. Antiferromagnetic type-I ordering has been found in this fcc metal below ${mathit{T}}_{mathit{N}}$=60 nK.We studied the puzzle presented by the neutron-diffraction measurements of Annila et al., which show that type-I order is absent in the high-field reigon below ${mathit{B}}_{mathit{c}}$=0.25 mT when Bensuremath{parallel}[111], although this kind of ordering was observed in the same fields when Bensuremath{parallel}[100] or [110]. Soft-mode analysis shows that the high-field ordering vector for Bensuremath{parallel}[111] is of the general type, Q=(h,k,l), where ensuremath{Vert}hensuremath{Vert}, ensuremath{Vert}kensuremath{Vert}, and ensuremath{Vert}lensuremath{Vert} are all unequal and nonzero, in agreement with our previous suggestion based on the mean-field theory. We predict various (h,k,l) structures in fields Bensuremath{lesssim}${mathit{B}}_{mathit{c}}$ for several field alignments other than [111]. The magnetic phase diagram of nuclear spins in copper can be explained on the basis of the previously calculated spin-spin interactions at least in fields Bensuremath{lesssim}${mathit{B}}_{mathit{c}}$ if the calculated parameters are changed only slightly." @default.
- W2075735493 created "2016-06-24" @default.
- W2075735493 creator A5004778869 @default.
- W2075735493 creator A5024746430 @default.
- W2075735493 date "1993-01-01" @default.
- W2075735493 modified "2023-10-16" @default.
- W2075735493 title "Antiferromagnets with anisotropic spin-spin interactions: Stability of the zero-field structure in an external field" @default.
- W2075735493 cites W1505259797 @default.
- W2075735493 cites W1647099917 @default.
- W2075735493 cites W1965406672 @default.
- W2075735493 cites W1968748554 @default.
- W2075735493 cites W1970098712 @default.
- W2075735493 cites W1970476754 @default.
- W2075735493 cites W1971517535 @default.
- W2075735493 cites W1972549051 @default.
- W2075735493 cites W1977042336 @default.
- W2075735493 cites W1977803714 @default.
- W2075735493 cites W1982966074 @default.
- W2075735493 cites W1985458143 @default.
- W2075735493 cites W1988638838 @default.
- W2075735493 cites W1989178658 @default.
- W2075735493 cites W1996885536 @default.
- W2075735493 cites W1998770949 @default.
- W2075735493 cites W2000601531 @default.
- W2075735493 cites W2001896760 @default.
- W2075735493 cites W2003723756 @default.
- W2075735493 cites W2005350036 @default.
- W2075735493 cites W2006139299 @default.
- W2075735493 cites W2015508722 @default.
- W2075735493 cites W2019819843 @default.
- W2075735493 cites W2021566576 @default.
- W2075735493 cites W2026159962 @default.
- W2075735493 cites W2030186384 @default.
- W2075735493 cites W2030557718 @default.
- W2075735493 cites W2033289759 @default.
- W2075735493 cites W2033349900 @default.
- W2075735493 cites W2033515453 @default.
- W2075735493 cites W2034043118 @default.
- W2075735493 cites W2041738816 @default.
- W2075735493 cites W2044816204 @default.
- W2075735493 cites W2047515828 @default.
- W2075735493 cites W2047810071 @default.
- W2075735493 cites W2049375995 @default.
- W2075735493 cites W2051319333 @default.
- W2075735493 cites W2053809343 @default.
- W2075735493 cites W2059761896 @default.
- W2075735493 cites W2065180233 @default.
- W2075735493 cites W2066704833 @default.
- W2075735493 cites W2066947165 @default.
- W2075735493 cites W2070175774 @default.
- W2075735493 cites W2072946623 @default.
- W2075735493 cites W2076119327 @default.
- W2075735493 cites W2079325511 @default.
- W2075735493 cites W2080655034 @default.
- W2075735493 cites W2085098617 @default.
- W2075735493 cites W2089448411 @default.
- W2075735493 cites W2093109516 @default.
- W2075735493 cites W2093265780 @default.
- W2075735493 cites W2093301160 @default.
- W2075735493 cites W2130490858 @default.
- W2075735493 cites W2152700274 @default.
- W2075735493 cites W2159500084 @default.
- W2075735493 cites W2170157331 @default.
- W2075735493 cites W2207525539 @default.
- W2075735493 cites W2226857920 @default.
- W2075735493 cites W2314413803 @default.
- W2075735493 cites W2316070867 @default.
- W2075735493 cites W3118287766 @default.
- W2075735493 doi "https://doi.org/10.1103/physrevb.47.237" @default.
- W2075735493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10004439" @default.
- W2075735493 hasPublicationYear "1993" @default.
- W2075735493 type Work @default.
- W2075735493 sameAs 2075735493 @default.
- W2075735493 citedByCount "16" @default.
- W2075735493 countsByYear W20757354932018 @default.
- W2075735493 crossrefType "journal-article" @default.
- W2075735493 hasAuthorship W2075735493A5004778869 @default.
- W2075735493 hasAuthorship W2075735493A5024746430 @default.
- W2075735493 hasConcept C121332964 @default.
- W2075735493 hasConcept C124712363 @default.
- W2075735493 hasConcept C155355069 @default.
- W2075735493 hasConcept C16291881 @default.
- W2075735493 hasConcept C26873012 @default.
- W2075735493 hasConcept C42704618 @default.
- W2075735493 hasConcept C44221107 @default.
- W2075735493 hasConcept C62520636 @default.
- W2075735493 hasConcept C82217956 @default.
- W2075735493 hasConcept C85725439 @default.
- W2075735493 hasConcept C97355855 @default.
- W2075735493 hasConceptScore W2075735493C121332964 @default.
- W2075735493 hasConceptScore W2075735493C124712363 @default.
- W2075735493 hasConceptScore W2075735493C155355069 @default.
- W2075735493 hasConceptScore W2075735493C16291881 @default.
- W2075735493 hasConceptScore W2075735493C26873012 @default.
- W2075735493 hasConceptScore W2075735493C42704618 @default.
- W2075735493 hasConceptScore W2075735493C44221107 @default.
- W2075735493 hasConceptScore W2075735493C62520636 @default.
- W2075735493 hasConceptScore W2075735493C82217956 @default.
- W2075735493 hasConceptScore W2075735493C85725439 @default.
- W2075735493 hasConceptScore W2075735493C97355855 @default.