Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075801023> ?p ?o ?g. }
- W2075801023 endingPage "721" @default.
- W2075801023 startingPage "716" @default.
- W2075801023 abstract "The heat transfer and pressure drop of nanofluids containing carbon nanotubes in a horizontal circular tube are experimentally investigated. The friction factor of the dilute nanofluids shows a good agreement with the prediction from the Hagen-Poiseuille flow theory. A considerable enhancement in the average convective heat transfer is also observed compared with the distilled water. For the nanofluids with volumetric concentration of 0.05% and 0.24%, the heat transfer enhancement are 70% and 190% at Reynolds number of about 120 respectively, while the enhancement of thermal conductivity is less than 10%, therefore, the large heat transfer increase cannot be solely attributed to the enhanced thermal conductivity. By measuring the pump power supply and the thermal conductance of the test tube, our results suggest that the nanofluids at low concentration enhance the heat transfer with little extra penalty in pump power, thus have great potential for applications in the heat transfer systems." @default.
- W2075801023 created "2016-06-24" @default.
- W2075801023 creator A5027038246 @default.
- W2075801023 creator A5050803462 @default.
- W2075801023 creator A5056721257 @default.
- W2075801023 creator A5089727554 @default.
- W2075801023 date "2013-01-01" @default.
- W2075801023 modified "2023-10-13" @default.
- W2075801023 title "Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows" @default.
- W2075801023 cites W1972909034 @default.
- W2075801023 cites W1975138618 @default.
- W2075801023 cites W1984834299 @default.
- W2075801023 cites W1992152837 @default.
- W2075801023 cites W2009627598 @default.
- W2075801023 cites W2012330422 @default.
- W2075801023 cites W2014129356 @default.
- W2075801023 cites W2019882879 @default.
- W2075801023 cites W2024366431 @default.
- W2075801023 cites W2027750441 @default.
- W2075801023 cites W2032757927 @default.
- W2075801023 cites W2035685097 @default.
- W2075801023 cites W2047714158 @default.
- W2075801023 cites W2051623369 @default.
- W2075801023 cites W2056022917 @default.
- W2075801023 cites W2071333337 @default.
- W2075801023 cites W2074983261 @default.
- W2075801023 cites W2075684707 @default.
- W2075801023 cites W2090131348 @default.
- W2075801023 cites W2093627956 @default.
- W2075801023 cites W2098689772 @default.
- W2075801023 cites W2118753970 @default.
- W2075801023 cites W2124490884 @default.
- W2075801023 cites W2126367910 @default.
- W2075801023 cites W2130155767 @default.
- W2075801023 cites W2134616821 @default.
- W2075801023 cites W2137918713 @default.
- W2075801023 cites W2141145914 @default.
- W2075801023 cites W2149886645 @default.
- W2075801023 doi "https://doi.org/10.1016/j.expthermflusci.2012.09.013" @default.
- W2075801023 hasPublicationYear "2013" @default.
- W2075801023 type Work @default.
- W2075801023 sameAs 2075801023 @default.
- W2075801023 citedByCount "165" @default.
- W2075801023 countsByYear W20758010232013 @default.
- W2075801023 countsByYear W20758010232014 @default.
- W2075801023 countsByYear W20758010232015 @default.
- W2075801023 countsByYear W20758010232016 @default.
- W2075801023 countsByYear W20758010232017 @default.
- W2075801023 countsByYear W20758010232018 @default.
- W2075801023 countsByYear W20758010232019 @default.
- W2075801023 countsByYear W20758010232020 @default.
- W2075801023 countsByYear W20758010232021 @default.
- W2075801023 countsByYear W20758010232022 @default.
- W2075801023 countsByYear W20758010232023 @default.
- W2075801023 crossrefType "journal-article" @default.
- W2075801023 hasAuthorship W2075801023A5027038246 @default.
- W2075801023 hasAuthorship W2075801023A5050803462 @default.
- W2075801023 hasAuthorship W2075801023A5056721257 @default.
- W2075801023 hasAuthorship W2075801023A5089727554 @default.
- W2075801023 hasConcept C114088122 @default.
- W2075801023 hasConcept C121332964 @default.
- W2075801023 hasConcept C127413603 @default.
- W2075801023 hasConcept C155672457 @default.
- W2075801023 hasConcept C159985019 @default.
- W2075801023 hasConcept C171250308 @default.
- W2075801023 hasConcept C192562407 @default.
- W2075801023 hasConcept C21946209 @default.
- W2075801023 hasConcept C2781345722 @default.
- W2075801023 hasConcept C50517652 @default.
- W2075801023 hasConcept C513720949 @default.
- W2075801023 hasConcept C57879066 @default.
- W2075801023 hasConcept C76563973 @default.
- W2075801023 hasConcept C78519656 @default.
- W2075801023 hasConcept C97355855 @default.
- W2075801023 hasConceptScore W2075801023C114088122 @default.
- W2075801023 hasConceptScore W2075801023C121332964 @default.
- W2075801023 hasConceptScore W2075801023C127413603 @default.
- W2075801023 hasConceptScore W2075801023C155672457 @default.
- W2075801023 hasConceptScore W2075801023C159985019 @default.
- W2075801023 hasConceptScore W2075801023C171250308 @default.
- W2075801023 hasConceptScore W2075801023C192562407 @default.
- W2075801023 hasConceptScore W2075801023C21946209 @default.
- W2075801023 hasConceptScore W2075801023C2781345722 @default.
- W2075801023 hasConceptScore W2075801023C50517652 @default.
- W2075801023 hasConceptScore W2075801023C513720949 @default.
- W2075801023 hasConceptScore W2075801023C57879066 @default.
- W2075801023 hasConceptScore W2075801023C76563973 @default.
- W2075801023 hasConceptScore W2075801023C78519656 @default.
- W2075801023 hasConceptScore W2075801023C97355855 @default.
- W2075801023 hasFunder F4320321001 @default.
- W2075801023 hasFunder F4320321106 @default.
- W2075801023 hasLocation W20758010231 @default.
- W2075801023 hasOpenAccess W2075801023 @default.
- W2075801023 hasPrimaryLocation W20758010231 @default.
- W2075801023 hasRelatedWork W1992388896 @default.
- W2075801023 hasRelatedWork W2006072390 @default.
- W2075801023 hasRelatedWork W2032629119 @default.
- W2075801023 hasRelatedWork W2108589637 @default.