Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075808119> ?p ?o ?g. }
- W2075808119 endingPage "47" @default.
- W2075808119 startingPage "31" @default.
- W2075808119 abstract "The generic and simple version of SALUS (System Approach to Land Use Sustainability) crop model was recently integrated in the DSSAT (Decision Support System for Agrotechnology Transfer) cropping system model to provide an alternative approach to more complex crop models without the need for a detailed parameterization. A previous uncertainty and sensitivity analysis of the model (SALUS-Simple) established that accurate estimation of 15 of the 20 crop parameters required for predicting crop performance under water limitation was necessary to achieve reliable simulations. The present study used a Markov Chain Monte Carlo-based Bayesian stepwise approach for estimating crop parameters in SALUS-Simple using limited, end-of-season data (limited data case) and detailed in-season data (detailed data case). Independent testing were performed using data distributed with DSSAT version 4.5. Results of the detailed data case indicated that the estimated parameters resulted in smaller deviations between simulated and measured variables and in posterior parameter distributions with smaller variances. Independent testing showed that maize growth simulations (based on both data cases) were in good agreement with observations while peanut and cotton growth was simulated with mixed success. SALUS-Simple predictions using parameters estimated in the limited data case were concordant with observations for end-of-season biomass and yield, but simulations of in-season growth were degraded relative to the use of parameters estimated in the detailed data case. We conclude that the use of a sequential approach reduced compensation errors and, the use of a range of data types combined with a higher ratio between the number of data points and the number of estimated parameters significantly reduced uncertainties associated with the estimated parameters. Furthermore, model predictions based on mean parameter values can be regarded as reliable estimators of the expected values of the distributions of model predictions when an average prediction rather than a distribution is needed. Results from this study highlighted the principle that parameters estimated based on end-of-season data do not guarantee accurate prediction of in-season growth even if a Bayesian approach is used. The ability of the SALUS-Simple model to be parameterized or adapted for simulating canopy-level potential production of annual plants based on limited data is promising. Further testing of the model will help establish its response to different soils, climates and crops." @default.
- W2075808119 created "2016-06-24" @default.
- W2075808119 creator A5046592236 @default.
- W2075808119 creator A5051664836 @default.
- W2075808119 creator A5074248754 @default.
- W2075808119 date "2015-05-01" @default.
- W2075808119 modified "2023-09-27" @default.
- W2075808119 title "Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model" @default.
- W2075808119 cites W1679242182 @default.
- W2075808119 cites W1912115992 @default.
- W2075808119 cites W1962463356 @default.
- W2075808119 cites W1969602159 @default.
- W2075808119 cites W1978420442 @default.
- W2075808119 cites W1978835147 @default.
- W2075808119 cites W1981859380 @default.
- W2075808119 cites W1985279971 @default.
- W2075808119 cites W1987874405 @default.
- W2075808119 cites W1990088328 @default.
- W2075808119 cites W1992703502 @default.
- W2075808119 cites W1994276619 @default.
- W2075808119 cites W1995737178 @default.
- W2075808119 cites W1997089378 @default.
- W2075808119 cites W2003935219 @default.
- W2075808119 cites W2012725401 @default.
- W2075808119 cites W2012798851 @default.
- W2075808119 cites W2028047305 @default.
- W2075808119 cites W2030225685 @default.
- W2075808119 cites W2030854135 @default.
- W2075808119 cites W2045441851 @default.
- W2075808119 cites W2047884674 @default.
- W2075808119 cites W2048971218 @default.
- W2075808119 cites W2052900186 @default.
- W2075808119 cites W2056191667 @default.
- W2075808119 cites W2056760934 @default.
- W2075808119 cites W2057533158 @default.
- W2075808119 cites W2057890560 @default.
- W2075808119 cites W2073398496 @default.
- W2075808119 cites W2080344679 @default.
- W2075808119 cites W2082844294 @default.
- W2075808119 cites W2084958777 @default.
- W2075808119 cites W2085446849 @default.
- W2075808119 cites W2088787716 @default.
- W2075808119 cites W2088947749 @default.
- W2075808119 cites W2095345166 @default.
- W2075808119 cites W2104571002 @default.
- W2075808119 cites W2108182541 @default.
- W2075808119 cites W2112742535 @default.
- W2075808119 cites W2117162642 @default.
- W2075808119 cites W2124738823 @default.
- W2075808119 cites W2130773809 @default.
- W2075808119 cites W2138309709 @default.
- W2075808119 cites W2145814228 @default.
- W2075808119 cites W2152581109 @default.
- W2075808119 cites W2158883105 @default.
- W2075808119 cites W2173754940 @default.
- W2075808119 cites W3189912875 @default.
- W2075808119 cites W4244540061 @default.
- W2075808119 cites W4311724467 @default.
- W2075808119 doi "https://doi.org/10.1016/j.agsy.2014.12.003" @default.
- W2075808119 hasPublicationYear "2015" @default.
- W2075808119 type Work @default.
- W2075808119 sameAs 2075808119 @default.
- W2075808119 citedByCount "23" @default.
- W2075808119 countsByYear W20758081192015 @default.
- W2075808119 countsByYear W20758081192016 @default.
- W2075808119 countsByYear W20758081192017 @default.
- W2075808119 countsByYear W20758081192019 @default.
- W2075808119 countsByYear W20758081192020 @default.
- W2075808119 countsByYear W20758081192021 @default.
- W2075808119 countsByYear W20758081192022 @default.
- W2075808119 countsByYear W20758081192023 @default.
- W2075808119 crossrefType "journal-article" @default.
- W2075808119 hasAuthorship W2075808119A5046592236 @default.
- W2075808119 hasAuthorship W2075808119A5051664836 @default.
- W2075808119 hasAuthorship W2075808119A5074248754 @default.
- W2075808119 hasConcept C105795698 @default.
- W2075808119 hasConcept C107673813 @default.
- W2075808119 hasConcept C111350023 @default.
- W2075808119 hasConcept C126343540 @default.
- W2075808119 hasConcept C137660486 @default.
- W2075808119 hasConcept C149782125 @default.
- W2075808119 hasConcept C19499675 @default.
- W2075808119 hasConcept C2777106113 @default.
- W2075808119 hasConcept C2777399377 @default.
- W2075808119 hasConcept C33923547 @default.
- W2075808119 hasConcept C41008148 @default.
- W2075808119 hasConcept C6557445 @default.
- W2075808119 hasConcept C86803240 @default.
- W2075808119 hasConceptScore W2075808119C105795698 @default.
- W2075808119 hasConceptScore W2075808119C107673813 @default.
- W2075808119 hasConceptScore W2075808119C111350023 @default.
- W2075808119 hasConceptScore W2075808119C126343540 @default.
- W2075808119 hasConceptScore W2075808119C137660486 @default.
- W2075808119 hasConceptScore W2075808119C149782125 @default.
- W2075808119 hasConceptScore W2075808119C19499675 @default.
- W2075808119 hasConceptScore W2075808119C2777106113 @default.
- W2075808119 hasConceptScore W2075808119C2777399377 @default.
- W2075808119 hasConceptScore W2075808119C33923547 @default.