Matches in SemOpenAlex for { <https://semopenalex.org/work/W2075832009> ?p ?o ?g. }
- W2075832009 endingPage "1115" @default.
- W2075832009 startingPage "1109" @default.
- W2075832009 abstract "Background Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. Study Design A study of diagnostic test accuracy. Setting & Participants 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n = 581), internal validation cohort (n = 278), and external validation cohort (n = 371). Index Tests Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Reference Test Measured GFR (mGFR). Other Measurements GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. Results In the external validation cohort, mean mGFR was 49 ± 27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and −0.5 mL/min/1.73 m2, respectively (P < 0.001 and P = 0.02 compared to CKD-EPI and P < 0.001 comparing the new regression and ANN models). Precisions (IQRs for the difference) were 22.6, 14.9, and 15.6 mL/min/1.73 m2, respectively (P < 0.001 for both compared to CKD-EPI and P < 0.001 comparing the new ANN and new regression models). Accuracies (proportions of eGFRs not deviating >30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (P < 0.001 for both compared to CKD-EPI and P = 0.5 comparing the new ANN and new regression models). Limitations Different methods for measuring GFR were a source of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. Conclusions An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation. Accurate estimation of glomerular filtration rate (GFR) is important in clinical practice. Current models derived from regression are limited by the imprecision of GFR estimates. We hypothesized that an artificial neural network (ANN) might improve the precision of GFR estimates. A study of diagnostic test accuracy. 1,230 patients with chronic kidney disease were enrolled, including the development cohort (n = 581), internal validation cohort (n = 278), and external validation cohort (n = 371). Estimated GFR (eGFR) using a new ANN model and a new regression model using age, sex, and standardized serum creatinine level derived in the development and internal validation cohort, and the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009 creatinine equation. Measured GFR (mGFR). GFR was measured using a diethylenetriaminepentaacetic acid renal dynamic imaging method. Serum creatinine was measured with an enzymatic method traceable to isotope-dilution mass spectrometry. In the external validation cohort, mean mGFR was 49 ± 27 (SD) mL/min/1.73 m2 and biases (median difference between mGFR and eGFR) for the CKD-EPI, new regression, and new ANN models were 0.4, 1.5, and −0.5 mL/min/1.73 m2, respectively (P < 0.001 and P = 0.02 compared to CKD-EPI and P < 0.001 comparing the new regression and ANN models). Precisions (IQRs for the difference) were 22.6, 14.9, and 15.6 mL/min/1.73 m2, respectively (P < 0.001 for both compared to CKD-EPI and P < 0.001 comparing the new ANN and new regression models). Accuracies (proportions of eGFRs not deviating >30% from mGFR) were 50.9%, 77.4%, and 78.7%, respectively (P < 0.001 for both compared to CKD-EPI and P = 0.5 comparing the new ANN and new regression models). Different methods for measuring GFR were a source of systematic bias in comparisons of new models to CKD-EPI, and both the derivation and validation cohorts consisted of a group of patients who were referred to the same institution. An ANN model using 3 variables did not perform better than a new regression model. Whether ANN can improve GFR estimation using more variables requires further investigation." @default.
- W2075832009 created "2016-06-24" @default.
- W2075832009 creator A5017164730 @default.
- W2075832009 creator A5017210235 @default.
- W2075832009 creator A5020914564 @default.
- W2075832009 creator A5021190832 @default.
- W2075832009 creator A5039142525 @default.
- W2075832009 creator A5039339597 @default.
- W2075832009 creator A5056964649 @default.
- W2075832009 creator A5063315923 @default.
- W2075832009 creator A5085118042 @default.
- W2075832009 date "2013-12-01" @default.
- W2075832009 modified "2023-10-10" @default.
- W2075832009 title "A Comparison of the Performances of an Artificial Neural Network and a Regression Model for GFR Estimation" @default.
- W2075832009 cites W1960597284 @default.
- W2075832009 cites W1979933245 @default.
- W2075832009 cites W1982981198 @default.
- W2075832009 cites W1988131900 @default.
- W2075832009 cites W2024442536 @default.
- W2075832009 cites W2039173155 @default.
- W2075832009 cites W2042516724 @default.
- W2075832009 cites W2055864845 @default.
- W2075832009 cites W2073068607 @default.
- W2075832009 cites W2073575970 @default.
- W2075832009 cites W2077093911 @default.
- W2075832009 cites W2079083604 @default.
- W2075832009 cites W2104894085 @default.
- W2075832009 cites W2105857214 @default.
- W2075832009 cites W2110031681 @default.
- W2075832009 cites W2118625269 @default.
- W2075832009 cites W2124176097 @default.
- W2075832009 cites W2128168657 @default.
- W2075832009 cites W2145732657 @default.
- W2075832009 cites W2150134279 @default.
- W2075832009 cites W2152189242 @default.
- W2075832009 cites W2155965977 @default.
- W2075832009 cites W2159420214 @default.
- W2075832009 cites W2163573176 @default.
- W2075832009 cites W2333837974 @default.
- W2075832009 cites W3025346697 @default.
- W2075832009 cites W4211214771 @default.
- W2075832009 doi "https://doi.org/10.1053/j.ajkd.2013.07.010" @default.
- W2075832009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24011972" @default.
- W2075832009 hasPublicationYear "2013" @default.
- W2075832009 type Work @default.
- W2075832009 sameAs 2075832009 @default.
- W2075832009 citedByCount "19" @default.
- W2075832009 countsByYear W20758320092015 @default.
- W2075832009 countsByYear W20758320092016 @default.
- W2075832009 countsByYear W20758320092017 @default.
- W2075832009 countsByYear W20758320092018 @default.
- W2075832009 countsByYear W20758320092019 @default.
- W2075832009 countsByYear W20758320092020 @default.
- W2075832009 countsByYear W20758320092021 @default.
- W2075832009 countsByYear W20758320092022 @default.
- W2075832009 crossrefType "journal-article" @default.
- W2075832009 hasAuthorship W2075832009A5017164730 @default.
- W2075832009 hasAuthorship W2075832009A5017210235 @default.
- W2075832009 hasAuthorship W2075832009A5020914564 @default.
- W2075832009 hasAuthorship W2075832009A5021190832 @default.
- W2075832009 hasAuthorship W2075832009A5039142525 @default.
- W2075832009 hasAuthorship W2075832009A5039339597 @default.
- W2075832009 hasAuthorship W2075832009A5056964649 @default.
- W2075832009 hasAuthorship W2075832009A5063315923 @default.
- W2075832009 hasAuthorship W2075832009A5085118042 @default.
- W2075832009 hasConcept C105795698 @default.
- W2075832009 hasConcept C126322002 @default.
- W2075832009 hasConcept C126894567 @default.
- W2075832009 hasConcept C159641895 @default.
- W2075832009 hasConcept C2778653478 @default.
- W2075832009 hasConcept C2780306776 @default.
- W2075832009 hasConcept C33923547 @default.
- W2075832009 hasConcept C48921125 @default.
- W2075832009 hasConcept C71924100 @default.
- W2075832009 hasConcept C72563966 @default.
- W2075832009 hasConcept C83546350 @default.
- W2075832009 hasConceptScore W2075832009C105795698 @default.
- W2075832009 hasConceptScore W2075832009C126322002 @default.
- W2075832009 hasConceptScore W2075832009C126894567 @default.
- W2075832009 hasConceptScore W2075832009C159641895 @default.
- W2075832009 hasConceptScore W2075832009C2778653478 @default.
- W2075832009 hasConceptScore W2075832009C2780306776 @default.
- W2075832009 hasConceptScore W2075832009C33923547 @default.
- W2075832009 hasConceptScore W2075832009C48921125 @default.
- W2075832009 hasConceptScore W2075832009C71924100 @default.
- W2075832009 hasConceptScore W2075832009C72563966 @default.
- W2075832009 hasConceptScore W2075832009C83546350 @default.
- W2075832009 hasIssue "6" @default.
- W2075832009 hasLocation W20758320091 @default.
- W2075832009 hasLocation W20758320092 @default.
- W2075832009 hasOpenAccess W2075832009 @default.
- W2075832009 hasPrimaryLocation W20758320091 @default.
- W2075832009 hasRelatedWork W1633229201 @default.
- W2075832009 hasRelatedWork W1984379637 @default.
- W2075832009 hasRelatedWork W2063500729 @default.
- W2075832009 hasRelatedWork W2124543160 @default.
- W2075832009 hasRelatedWork W2621053019 @default.
- W2075832009 hasRelatedWork W2872957824 @default.