Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076005979> ?p ?o ?g. }
- W2076005979 endingPage "142" @default.
- W2076005979 startingPage "119" @default.
- W2076005979 abstract "Kuruoǧlu, E. E., Nonlinear Least l p -Norm Filters for Nonlinear Autoregressive α-Stable Processes, Digital Signal Processing 12 (2002) 119–142 The α-stable distribution family has received great interest recently, due to its ability to successfully model impulsive data. α-stable distributions have found applications in areas such as radar signal processing, audio restoration, financial time series modeling, and image processing. Various works on linear parametric models with α-stable innovations have been reported in the literature. However, some recent work has demonstrated that linear models are not in general adequate to capture all characteristics of heavy-tailed data. Moreover, it is known that the optimal minimum dispersion estimator for α-stable data is not necessarily linear. Therefore, in this paper, we suggest a shift in the interest to nonlinear parametric models for problems involving α-stable distributions. In particular, we study a simple yet analytic nonlinear random process model namely polynomial autoregressive α-stable processes. Polynomial autoregression and Volterra filtering have been successful models for some biomedical and seismic signals reflecting their underlying nonlinear generation mechanisms. In this paper, we employ α-stable processes instead of classical Gaussian distribution as an innovation sequence and arrive at a model capable of describing asymmetric as well as impulsive characteristics. We provide a number of novel adaptive and block type algorithms for the estimation of model parameters of this class of nonlinear processes efficiently. Simulation results on synthetic data demonstrate clearly the superiority of the novel algorithms to classical techniques. The paper concludes with a discussion of the application areas of the techniques developed in the paper, including impulsive noise suppression, nonlinear system identification, target tracking, and nonlinear channel equalization." @default.
- W2076005979 created "2016-06-24" @default.
- W2076005979 creator A5038228706 @default.
- W2076005979 date "2002-01-01" @default.
- W2076005979 modified "2023-10-16" @default.
- W2076005979 title "Nonlinear Least lp-Norm Filters for Nonlinear Autoregressive α-Stable Processes" @default.
- W2076005979 cites W1518419959 @default.
- W2076005979 cites W1528473565 @default.
- W2076005979 cites W1983683279 @default.
- W2076005979 cites W1987081399 @default.
- W2076005979 cites W1996124770 @default.
- W2076005979 cites W2004481850 @default.
- W2076005979 cites W2008445894 @default.
- W2076005979 cites W2011611029 @default.
- W2076005979 cites W2015490770 @default.
- W2076005979 cites W2016840637 @default.
- W2076005979 cites W2028441171 @default.
- W2076005979 cites W2030319782 @default.
- W2076005979 cites W2032428744 @default.
- W2076005979 cites W2039993839 @default.
- W2076005979 cites W2051958750 @default.
- W2076005979 cites W2055342986 @default.
- W2076005979 cites W2056761220 @default.
- W2076005979 cites W2068379236 @default.
- W2076005979 cites W2083904317 @default.
- W2076005979 cites W2099238445 @default.
- W2076005979 cites W2105971164 @default.
- W2076005979 cites W2106188575 @default.
- W2076005979 cites W2107843077 @default.
- W2076005979 cites W2113214070 @default.
- W2076005979 cites W2119043701 @default.
- W2076005979 cites W2138428649 @default.
- W2076005979 cites W2145522405 @default.
- W2076005979 cites W2151103514 @default.
- W2076005979 cites W2154339093 @default.
- W2076005979 cites W2170155528 @default.
- W2076005979 cites W2429034345 @default.
- W2076005979 cites W3125246470 @default.
- W2076005979 cites W322272296 @default.
- W2076005979 doi "https://doi.org/10.1006/dspr.2001.0416" @default.
- W2076005979 hasPublicationYear "2002" @default.
- W2076005979 type Work @default.
- W2076005979 sameAs 2076005979 @default.
- W2076005979 citedByCount "38" @default.
- W2076005979 countsByYear W20760059792012 @default.
- W2076005979 countsByYear W20760059792013 @default.
- W2076005979 countsByYear W20760059792014 @default.
- W2076005979 countsByYear W20760059792015 @default.
- W2076005979 countsByYear W20760059792016 @default.
- W2076005979 countsByYear W20760059792017 @default.
- W2076005979 countsByYear W20760059792019 @default.
- W2076005979 countsByYear W20760059792020 @default.
- W2076005979 countsByYear W20760059792021 @default.
- W2076005979 countsByYear W20760059792022 @default.
- W2076005979 countsByYear W20760059792023 @default.
- W2076005979 crossrefType "journal-article" @default.
- W2076005979 hasAuthorship W2076005979A5038228706 @default.
- W2076005979 hasConcept C104267543 @default.
- W2076005979 hasConcept C105795698 @default.
- W2076005979 hasConcept C106131492 @default.
- W2076005979 hasConcept C11413529 @default.
- W2076005979 hasConcept C117251300 @default.
- W2076005979 hasConcept C121332964 @default.
- W2076005979 hasConcept C126255220 @default.
- W2076005979 hasConcept C137685913 @default.
- W2076005979 hasConcept C149782125 @default.
- W2076005979 hasConcept C158622935 @default.
- W2076005979 hasConcept C159877910 @default.
- W2076005979 hasConcept C163175372 @default.
- W2076005979 hasConcept C185429906 @default.
- W2076005979 hasConcept C22597639 @default.
- W2076005979 hasConcept C28826006 @default.
- W2076005979 hasConcept C31972630 @default.
- W2076005979 hasConcept C33923547 @default.
- W2076005979 hasConcept C41008148 @default.
- W2076005979 hasConcept C62520636 @default.
- W2076005979 hasConcept C84462506 @default.
- W2076005979 hasConcept C9390403 @default.
- W2076005979 hasConceptScore W2076005979C104267543 @default.
- W2076005979 hasConceptScore W2076005979C105795698 @default.
- W2076005979 hasConceptScore W2076005979C106131492 @default.
- W2076005979 hasConceptScore W2076005979C11413529 @default.
- W2076005979 hasConceptScore W2076005979C117251300 @default.
- W2076005979 hasConceptScore W2076005979C121332964 @default.
- W2076005979 hasConceptScore W2076005979C126255220 @default.
- W2076005979 hasConceptScore W2076005979C137685913 @default.
- W2076005979 hasConceptScore W2076005979C149782125 @default.
- W2076005979 hasConceptScore W2076005979C158622935 @default.
- W2076005979 hasConceptScore W2076005979C159877910 @default.
- W2076005979 hasConceptScore W2076005979C163175372 @default.
- W2076005979 hasConceptScore W2076005979C185429906 @default.
- W2076005979 hasConceptScore W2076005979C22597639 @default.
- W2076005979 hasConceptScore W2076005979C28826006 @default.
- W2076005979 hasConceptScore W2076005979C31972630 @default.
- W2076005979 hasConceptScore W2076005979C33923547 @default.
- W2076005979 hasConceptScore W2076005979C41008148 @default.
- W2076005979 hasConceptScore W2076005979C62520636 @default.
- W2076005979 hasConceptScore W2076005979C84462506 @default.