Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076018173> ?p ?o ?g. }
- W2076018173 endingPage "89" @default.
- W2076018173 startingPage "82" @default.
- W2076018173 abstract "Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial." @default.
- W2076018173 created "2016-06-24" @default.
- W2076018173 creator A5020010248 @default.
- W2076018173 date "2012-11-01" @default.
- W2076018173 modified "2023-10-09" @default.
- W2076018173 title "Global sensitivity analysis using sparse grid interpolation and polynomial chaos" @default.
- W2076018173 cites W1964249512 @default.
- W2076018173 cites W1992066335 @default.
- W2076018173 cites W1994080277 @default.
- W2076018173 cites W2009804339 @default.
- W2076018173 cites W2018159038 @default.
- W2076018173 cites W2035363534 @default.
- W2076018173 cites W2041865295 @default.
- W2076018173 cites W2049774453 @default.
- W2076018173 cites W2065359237 @default.
- W2076018173 cites W2065775831 @default.
- W2076018173 cites W2070132454 @default.
- W2076018173 cites W2090171599 @default.
- W2076018173 cites W2134759932 @default.
- W2076018173 cites W2141755357 @default.
- W2076018173 cites W2142863015 @default.
- W2076018173 cites W2143591652 @default.
- W2076018173 cites W2158358539 @default.
- W2076018173 cites W2159052351 @default.
- W2076018173 cites W3122455945 @default.
- W2076018173 cites W4241793634 @default.
- W2076018173 cites W999207820 @default.
- W2076018173 doi "https://doi.org/10.1016/j.ress.2011.07.011" @default.
- W2076018173 hasPublicationYear "2012" @default.
- W2076018173 type Work @default.
- W2076018173 sameAs 2076018173 @default.
- W2076018173 citedByCount "67" @default.
- W2076018173 countsByYear W20760181732012 @default.
- W2076018173 countsByYear W20760181732013 @default.
- W2076018173 countsByYear W20760181732014 @default.
- W2076018173 countsByYear W20760181732015 @default.
- W2076018173 countsByYear W20760181732016 @default.
- W2076018173 countsByYear W20760181732017 @default.
- W2076018173 countsByYear W20760181732018 @default.
- W2076018173 countsByYear W20760181732019 @default.
- W2076018173 countsByYear W20760181732020 @default.
- W2076018173 countsByYear W20760181732021 @default.
- W2076018173 countsByYear W20760181732022 @default.
- W2076018173 countsByYear W20760181732023 @default.
- W2076018173 crossrefType "journal-article" @default.
- W2076018173 hasAuthorship W2076018173A5020010248 @default.
- W2076018173 hasConcept C105795698 @default.
- W2076018173 hasConcept C11413529 @default.
- W2076018173 hasConcept C121684516 @default.
- W2076018173 hasConcept C126255220 @default.
- W2076018173 hasConcept C127413603 @default.
- W2076018173 hasConcept C134306372 @default.
- W2076018173 hasConcept C137800194 @default.
- W2076018173 hasConcept C14036430 @default.
- W2076018173 hasConcept C142362112 @default.
- W2076018173 hasConcept C156439662 @default.
- W2076018173 hasConcept C171836373 @default.
- W2076018173 hasConcept C17744445 @default.
- W2076018173 hasConcept C186429297 @default.
- W2076018173 hasConcept C186633575 @default.
- W2076018173 hasConcept C187691185 @default.
- W2076018173 hasConcept C19499675 @default.
- W2076018173 hasConcept C199539241 @default.
- W2076018173 hasConcept C201362023 @default.
- W2076018173 hasConcept C21200559 @default.
- W2076018173 hasConcept C24326235 @default.
- W2076018173 hasConcept C2524010 @default.
- W2076018173 hasConcept C2776359362 @default.
- W2076018173 hasConcept C28826006 @default.
- W2076018173 hasConcept C33923547 @default.
- W2076018173 hasConcept C41008148 @default.
- W2076018173 hasConcept C49740808 @default.
- W2076018173 hasConcept C502989409 @default.
- W2076018173 hasConcept C52119013 @default.
- W2076018173 hasConcept C554144382 @default.
- W2076018173 hasConcept C78458016 @default.
- W2076018173 hasConcept C86803240 @default.
- W2076018173 hasConcept C88080468 @default.
- W2076018173 hasConcept C90119067 @default.
- W2076018173 hasConcept C91528185 @default.
- W2076018173 hasConcept C94625758 @default.
- W2076018173 hasConceptScore W2076018173C105795698 @default.
- W2076018173 hasConceptScore W2076018173C11413529 @default.
- W2076018173 hasConceptScore W2076018173C121684516 @default.
- W2076018173 hasConceptScore W2076018173C126255220 @default.
- W2076018173 hasConceptScore W2076018173C127413603 @default.
- W2076018173 hasConceptScore W2076018173C134306372 @default.
- W2076018173 hasConceptScore W2076018173C137800194 @default.
- W2076018173 hasConceptScore W2076018173C14036430 @default.
- W2076018173 hasConceptScore W2076018173C142362112 @default.
- W2076018173 hasConceptScore W2076018173C156439662 @default.
- W2076018173 hasConceptScore W2076018173C171836373 @default.
- W2076018173 hasConceptScore W2076018173C17744445 @default.
- W2076018173 hasConceptScore W2076018173C186429297 @default.
- W2076018173 hasConceptScore W2076018173C186633575 @default.
- W2076018173 hasConceptScore W2076018173C187691185 @default.
- W2076018173 hasConceptScore W2076018173C19499675 @default.
- W2076018173 hasConceptScore W2076018173C199539241 @default.