Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076038961> ?p ?o ?g. }
- W2076038961 endingPage "54" @default.
- W2076038961 startingPage "36" @default.
- W2076038961 abstract "Decompression experiments (from 400 to 70 MPa) were conducted to investigate sulfur (S) distribution and S-isotope fractionation between basaltic melts and coexisting fluids. Volatile-bearing [~ 3 to ~ 7 wt.% water (H2O), ~ 300 to ~ 1200 ppm S, 0 to ~ 3600 ppm chlorine (Cl)] basaltic glasses were used as starting materials. The MgO content in the melt was either ~ 1 wt.% (Mg-poor basalt) or ~ 10 wt.% (alkali basalt) to investigate the possible role of compositional changes in basaltic systems on fluid-melt distribution of S and S-isotopes. The experiments were performed in internally heated pressure vessels (IHPV) at 1050 °C to 1250 °C, variable oxygen fugacities (fO2; ranging from log(fO2/bar) ~ QFM to ~ QFM + 4; QFM = quartz–fayalite–magnetite buffer) and at a constant decompression rate (r) of 0.1 MPa/s. The annealing time (tA) at final pressure (p) and temperature (T) after decompression was varied from 0 to 5.5 h to study the fluid–melt equilibration process. Sulfur and H2O contents in the melt decreased significantly during decompression, while the Cl contents remained almost constant. No changes in H2O and Cl content were observed with tA, while S concentrations decreased slightly with tA < 2 h; i.e., near-equilibrium fluid–melt conditions were reached within ~ 2 h after decompression, even in experiments performed at the lowest T of 1050 °C. Thus, fluid–melt partitioning coefficients of S (DSfl/m) were determined from experiments with tA ≥ 2 h. The MgO (~ 1 to ~ 10 wt.%), H2O (~ 3 to ~ 7 wt.%) and Cl contents (< 0.4 wt.%) in the melt have no significant effect on DSfl/m. Consistent with previous studies we found that DSfl/m decreased strongly with increasing fO2; e.g., at ~ 1200 °C DSfl/m ≈ 180 at QFM + 1 and DSfl/m ≈ 40 at QFM + 4. A positive correlation was observed between DSfl/m and T in the range of 1150 to 1250 °C at both oxidizing (QFM + 4; DSfl/m = 52 ± 27 to 76 ± 30) and intermediate (QFM + 1.5; DSfl/m = 94 ± 20 to 209 ± 80) redox conditions. Data compiled at 1050 °C and relatively reducing conditions (~ QFM; DSfl/m = 58 ± 18) indicate that the trends may be extrapolated to lower T, at least for intermediate to reducing conditions (~ QFM + 1.5 to ~ QFM). The S-isotope composition in glasses of selected samples was measured by secondary ion mass spectrometry (SIMS). Gas–melt isotopic fractionation factors (αfl–m) were calculated via mass balance. At 1200 °C an average αfl–m of 0.9981 ± 0.0015 was determined for oxidizing conditions (~ QFM + 4), while an average αfl–m of 1.0025 ± 0.0010 was found for fairly reducing conditions (~ QFM + 1). Furthermore, at lower T (1050 °C) an average αfl–m of 1.0037 ± 0.0009 was determined for reducing conditions (~ QFM). The data showed that equilibrium fractionation effects during closed-system degassing of basaltic melts at T relevant for magmatic systems (1050 to 1250 °C) can induce a S-isotope fluid–melt fractionation of about + 4‰ in relatively reduced systems and of about − 2‰ in relatively oxidized systems. The reported experimental results are valuable for the interpretation of S and S-isotope signature in magmatic systems (e.g., in volcanic gasses or melt inclusions) and will help to elucidate, for instance, volatile transport processes across subduction zones and Earth's S cycle." @default.
- W2076038961 created "2016-06-24" @default.
- W2076038961 creator A5007530282 @default.
- W2076038961 creator A5022343313 @default.
- W2076038961 creator A5036238217 @default.
- W2076038961 creator A5040354605 @default.
- W2076038961 creator A5052189114 @default.
- W2076038961 creator A5085819966 @default.
- W2076038961 creator A5086430537 @default.
- W2076038961 date "2015-01-01" @default.
- W2076038961 modified "2023-10-16" @default.
- W2076038961 title "Experimental investigation of the S and S-isotope distribution between H2O–S±Cl fluids and basaltic melts during decompression" @default.
- W2076038961 cites W1643989040 @default.
- W2076038961 cites W1924958418 @default.
- W2076038961 cites W1965009329 @default.
- W2076038961 cites W1965360538 @default.
- W2076038961 cites W1973829210 @default.
- W2076038961 cites W1980899678 @default.
- W2076038961 cites W1981307489 @default.
- W2076038961 cites W1983050188 @default.
- W2076038961 cites W1986500041 @default.
- W2076038961 cites W1986993012 @default.
- W2076038961 cites W1987742912 @default.
- W2076038961 cites W1988255159 @default.
- W2076038961 cites W1990322558 @default.
- W2076038961 cites W1991901726 @default.
- W2076038961 cites W1998362132 @default.
- W2076038961 cites W1998931119 @default.
- W2076038961 cites W1999207748 @default.
- W2076038961 cites W2000321590 @default.
- W2076038961 cites W2003037435 @default.
- W2076038961 cites W2004485257 @default.
- W2076038961 cites W2006444770 @default.
- W2076038961 cites W2011046919 @default.
- W2076038961 cites W2011753735 @default.
- W2076038961 cites W2020142959 @default.
- W2076038961 cites W2022042024 @default.
- W2076038961 cites W2023491467 @default.
- W2076038961 cites W2026688680 @default.
- W2076038961 cites W2029182942 @default.
- W2076038961 cites W2033048387 @default.
- W2076038961 cites W2035394794 @default.
- W2076038961 cites W2042622834 @default.
- W2076038961 cites W2044928040 @default.
- W2076038961 cites W2045172266 @default.
- W2076038961 cites W2045713964 @default.
- W2076038961 cites W2046090053 @default.
- W2076038961 cites W2049242148 @default.
- W2076038961 cites W2049693080 @default.
- W2076038961 cites W2049956359 @default.
- W2076038961 cites W2056910670 @default.
- W2076038961 cites W2064295643 @default.
- W2076038961 cites W2068263426 @default.
- W2076038961 cites W2068525217 @default.
- W2076038961 cites W2070255162 @default.
- W2076038961 cites W2070707331 @default.
- W2076038961 cites W2073867908 @default.
- W2076038961 cites W2074625161 @default.
- W2076038961 cites W2076106081 @default.
- W2076038961 cites W2079728625 @default.
- W2076038961 cites W2081873885 @default.
- W2076038961 cites W2081982240 @default.
- W2076038961 cites W2085285699 @default.
- W2076038961 cites W2085967507 @default.
- W2076038961 cites W2091312057 @default.
- W2076038961 cites W2097756509 @default.
- W2076038961 cites W2103541815 @default.
- W2076038961 cites W2108232562 @default.
- W2076038961 cites W2119091455 @default.
- W2076038961 cites W2123584002 @default.
- W2076038961 cites W2126272095 @default.
- W2076038961 cites W2127671904 @default.
- W2076038961 cites W2142062379 @default.
- W2076038961 cites W2143060221 @default.
- W2076038961 cites W2144173597 @default.
- W2076038961 cites W2159993134 @default.
- W2076038961 cites W2161797530 @default.
- W2076038961 cites W2179323784 @default.
- W2076038961 cites W2188464786 @default.
- W2076038961 cites W2277305172 @default.
- W2076038961 cites W2316847825 @default.
- W2076038961 cites W2318098988 @default.
- W2076038961 cites W2318842377 @default.
- W2076038961 cites W2331190196 @default.
- W2076038961 cites W2335459763 @default.
- W2076038961 cites W2335572688 @default.
- W2076038961 cites W2517397417 @default.
- W2076038961 cites W2559668090 @default.
- W2076038961 cites W4233647643 @default.
- W2076038961 cites W4247877047 @default.
- W2076038961 doi "https://doi.org/10.1016/j.chemgeo.2014.11.012" @default.
- W2076038961 hasPublicationYear "2015" @default.
- W2076038961 type Work @default.
- W2076038961 sameAs 2076038961 @default.
- W2076038961 citedByCount "36" @default.
- W2076038961 countsByYear W20760389612015 @default.
- W2076038961 countsByYear W20760389612016 @default.
- W2076038961 countsByYear W20760389612017 @default.