Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076042261> ?p ?o ?g. }
- W2076042261 endingPage "134" @default.
- W2076042261 startingPage "123" @default.
- W2076042261 abstract "Riparian zones are considered potential hotspots of denitrification because they allow for the confluence of necessary electron acceptors (nitrate) and donors (carbon) via hydrologic flowpaths in low oxygen (reducing) conditions. While riparian areas have received considerable research attention, other soils prone to saturation have similar physicochemical characteristics but are less frequently studied. We quantified in situ denitrification rates in the shallow saturated zone, a dynamic portion of the landscape, across a range of hydroperiodicities, i.e., frequencies and durations of saturated conditions, as characterized by a topographic index in a small mixed land-use headwater catchment in central New York State. We found a strong positive relationship between topographic index and denitrification, indicating that the highest rates of denitrification occur in the relatively small portion of the landscape prone to saturation. We used the resulting relationship to distribute denitrification rates across the catchment and estimate denitrification fluxes from the shallow saturated zone. While the highest rates of denitrification were observed in wetter portions of the landscape, including riparian zones, we found that the shallow saturated zone beneath drier upland soils contributed to a larger portion of whole-catchment denitrification due to a larger areal extent. A topographic index-denitrification model is a promising and simple tool that allows for scaling of in situ denitrification rates across the landscape and provides insight into the spatial organization of denitrification at the catchment scale." @default.
- W2076042261 created "2016-06-24" @default.
- W2076042261 creator A5019856148 @default.
- W2076042261 creator A5023812766 @default.
- W2076042261 creator A5074351162 @default.
- W2076042261 date "2015-03-01" @default.
- W2076042261 modified "2023-10-16" @default.
- W2076042261 title "Using a soil topographic index to distribute denitrification fluxes across a northeastern headwater catchment" @default.
- W2076042261 cites W105609663 @default.
- W2076042261 cites W1510375409 @default.
- W2076042261 cites W1620271594 @default.
- W2076042261 cites W1653192597 @default.
- W2076042261 cites W1693142019 @default.
- W2076042261 cites W1888819694 @default.
- W2076042261 cites W1964407115 @default.
- W2076042261 cites W1970632312 @default.
- W2076042261 cites W1974448175 @default.
- W2076042261 cites W1974852309 @default.
- W2076042261 cites W1975014118 @default.
- W2076042261 cites W1981646498 @default.
- W2076042261 cites W1982629253 @default.
- W2076042261 cites W1984257790 @default.
- W2076042261 cites W1984617202 @default.
- W2076042261 cites W1985427727 @default.
- W2076042261 cites W1985741505 @default.
- W2076042261 cites W1992789834 @default.
- W2076042261 cites W1995848841 @default.
- W2076042261 cites W1998250489 @default.
- W2076042261 cites W2003832330 @default.
- W2076042261 cites W2011466733 @default.
- W2076042261 cites W2015032635 @default.
- W2076042261 cites W2016590944 @default.
- W2076042261 cites W2019484170 @default.
- W2076042261 cites W2022634695 @default.
- W2076042261 cites W2022701146 @default.
- W2076042261 cites W2022937837 @default.
- W2076042261 cites W2029587925 @default.
- W2076042261 cites W2030358492 @default.
- W2076042261 cites W2031353020 @default.
- W2076042261 cites W2037308434 @default.
- W2076042261 cites W2038394598 @default.
- W2076042261 cites W2052298702 @default.
- W2076042261 cites W2052968462 @default.
- W2076042261 cites W2054600060 @default.
- W2076042261 cites W2055705976 @default.
- W2076042261 cites W2061984660 @default.
- W2076042261 cites W2064090014 @default.
- W2076042261 cites W2065093833 @default.
- W2076042261 cites W2066836773 @default.
- W2076042261 cites W2068497800 @default.
- W2076042261 cites W2073977228 @default.
- W2076042261 cites W2076837330 @default.
- W2076042261 cites W2084744827 @default.
- W2076042261 cites W2087605399 @default.
- W2076042261 cites W2088553876 @default.
- W2076042261 cites W2091368907 @default.
- W2076042261 cites W2091637412 @default.
- W2076042261 cites W2094331672 @default.
- W2076042261 cites W2095068443 @default.
- W2076042261 cites W2108484081 @default.
- W2076042261 cites W2108716476 @default.
- W2076042261 cites W2115831799 @default.
- W2076042261 cites W2117327398 @default.
- W2076042261 cites W2118533626 @default.
- W2076042261 cites W2119097801 @default.
- W2076042261 cites W2119534769 @default.
- W2076042261 cites W2122806840 @default.
- W2076042261 cites W2127634575 @default.
- W2076042261 cites W2128739352 @default.
- W2076042261 cites W2133895048 @default.
- W2076042261 cites W2143179202 @default.
- W2076042261 cites W2144859974 @default.
- W2076042261 cites W2148492494 @default.
- W2076042261 cites W2149219977 @default.
- W2076042261 cites W2150899751 @default.
- W2076042261 cites W2152708572 @default.
- W2076042261 cites W2155414789 @default.
- W2076042261 cites W2156386141 @default.
- W2076042261 cites W2161665287 @default.
- W2076042261 cites W2162066644 @default.
- W2076042261 cites W2164704879 @default.
- W2076042261 cites W2169460081 @default.
- W2076042261 cites W2170465924 @default.
- W2076042261 cites W2180779804 @default.
- W2076042261 cites W4239425399 @default.
- W2076042261 cites W4244759617 @default.
- W2076042261 doi "https://doi.org/10.1016/j.jhydrol.2014.12.043" @default.
- W2076042261 hasPublicationYear "2015" @default.
- W2076042261 type Work @default.
- W2076042261 sameAs 2076042261 @default.
- W2076042261 citedByCount "40" @default.
- W2076042261 countsByYear W20760422612015 @default.
- W2076042261 countsByYear W20760422612016 @default.
- W2076042261 countsByYear W20760422612017 @default.
- W2076042261 countsByYear W20760422612018 @default.
- W2076042261 countsByYear W20760422612019 @default.
- W2076042261 countsByYear W20760422612020 @default.
- W2076042261 countsByYear W20760422612021 @default.