Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076152214> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2076152214 abstract "Principal component analysis and regression (PCA, PCR) are widespread algorithms for the calibration of spectrometers and the evaluation of spectra. In many applications, however, there are huge amounts of calibration data, as it is common to hyperspectral imaging for instance. Such data sets consist often of several ten thousands of spectra measured at several hundred wavelength positions. Hence, a PCA of calibration sets that large is computational very time consuming - in particular the included singular value decomposition (SVD). Since this procedure takes several hours of computation time on conventional personal computers, its calculation is often not feasible. In this paper a straightforward acceleration of the PCA is presented, which is achieved by data preprocessing consisting of three steps: data compression based on a wavelet transformation, exclusion of redundant data, and by taking advantage of the matrix dimensions. Since the size of the calibration matrix determines the calculation time of the PCA, a reduction of its size enables the acceleration. Due to an appropriate data preprocessing, the PCA of the discussed examples could be accelerated by more than one order of magnitude. It is demonstrated by means of synthetically generated spectra as well as by experimental data that after preprocessing the PCA results in calibration models, which are comparable to the ones obtained by the conventional approach." @default.
- W2076152214 created "2016-06-24" @default.
- W2076152214 creator A5057611416 @default.
- W2076152214 creator A5089989139 @default.
- W2076152214 creator A5090123139 @default.
- W2076152214 date "2002-02-22" @default.
- W2076152214 modified "2023-10-16" @default.
- W2076152214 title "<title>Numerical methods for accelerating the PCA of large data sets applied to hyperspectral imaging</title>" @default.
- W2076152214 cites W1981745143 @default.
- W2076152214 cites W1987800407 @default.
- W2076152214 doi "https://doi.org/10.1117/12.456960" @default.
- W2076152214 hasPublicationYear "2002" @default.
- W2076152214 type Work @default.
- W2076152214 sameAs 2076152214 @default.
- W2076152214 citedByCount "10" @default.
- W2076152214 countsByYear W20761522142020 @default.
- W2076152214 countsByYear W20761522142021 @default.
- W2076152214 countsByYear W20761522142023 @default.
- W2076152214 crossrefType "proceedings-article" @default.
- W2076152214 hasAuthorship W2076152214A5057611416 @default.
- W2076152214 hasAuthorship W2076152214A5089989139 @default.
- W2076152214 hasAuthorship W2076152214A5090123139 @default.
- W2076152214 hasConcept C10551718 @default.
- W2076152214 hasConcept C105795698 @default.
- W2076152214 hasConcept C106487976 @default.
- W2076152214 hasConcept C11413529 @default.
- W2076152214 hasConcept C124101348 @default.
- W2076152214 hasConcept C153180895 @default.
- W2076152214 hasConcept C153914771 @default.
- W2076152214 hasConcept C154945302 @default.
- W2076152214 hasConcept C159078339 @default.
- W2076152214 hasConcept C159985019 @default.
- W2076152214 hasConcept C165838908 @default.
- W2076152214 hasConcept C192562407 @default.
- W2076152214 hasConcept C22789450 @default.
- W2076152214 hasConcept C27438332 @default.
- W2076152214 hasConcept C33923547 @default.
- W2076152214 hasConcept C34736171 @default.
- W2076152214 hasConcept C41008148 @default.
- W2076152214 hasConcept C45374587 @default.
- W2076152214 hasConcept C47432892 @default.
- W2076152214 hasConceptScore W2076152214C10551718 @default.
- W2076152214 hasConceptScore W2076152214C105795698 @default.
- W2076152214 hasConceptScore W2076152214C106487976 @default.
- W2076152214 hasConceptScore W2076152214C11413529 @default.
- W2076152214 hasConceptScore W2076152214C124101348 @default.
- W2076152214 hasConceptScore W2076152214C153180895 @default.
- W2076152214 hasConceptScore W2076152214C153914771 @default.
- W2076152214 hasConceptScore W2076152214C154945302 @default.
- W2076152214 hasConceptScore W2076152214C159078339 @default.
- W2076152214 hasConceptScore W2076152214C159985019 @default.
- W2076152214 hasConceptScore W2076152214C165838908 @default.
- W2076152214 hasConceptScore W2076152214C192562407 @default.
- W2076152214 hasConceptScore W2076152214C22789450 @default.
- W2076152214 hasConceptScore W2076152214C27438332 @default.
- W2076152214 hasConceptScore W2076152214C33923547 @default.
- W2076152214 hasConceptScore W2076152214C34736171 @default.
- W2076152214 hasConceptScore W2076152214C41008148 @default.
- W2076152214 hasConceptScore W2076152214C45374587 @default.
- W2076152214 hasConceptScore W2076152214C47432892 @default.
- W2076152214 hasLocation W20761522141 @default.
- W2076152214 hasOpenAccess W2076152214 @default.
- W2076152214 hasPrimaryLocation W20761522141 @default.
- W2076152214 hasRelatedWork W2016749013 @default.
- W2076152214 hasRelatedWork W2079563953 @default.
- W2076152214 hasRelatedWork W2147817912 @default.
- W2076152214 hasRelatedWork W2352801741 @default.
- W2076152214 hasRelatedWork W2380927352 @default.
- W2076152214 hasRelatedWork W2609118866 @default.
- W2076152214 hasRelatedWork W2766300339 @default.
- W2076152214 hasRelatedWork W2811215163 @default.
- W2076152214 hasRelatedWork W3154145980 @default.
- W2076152214 hasRelatedWork W4211209597 @default.
- W2076152214 isParatext "false" @default.
- W2076152214 isRetracted "false" @default.
- W2076152214 magId "2076152214" @default.
- W2076152214 workType "article" @default.