Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076166095> ?p ?o ?g. }
- W2076166095 endingPage "553" @default.
- W2076166095 startingPage "542" @default.
- W2076166095 abstract "Global regression models were developed to estimate individual levels of long-term exposure to traffic-related air pollutants. The models are based on data of a one-year measurement programme including geographic data on traffic and population densities. This investigation is part of a cohort study on the impact of traffic-related air pollution on respiratory health, conducted at the westerly end of the Ruhr-area in North-Rhine Westphalia, Germany. Concentrations of NO2, fine particle mass (PM2.5) and filter absorbance of PM2.5 as a marker for soot were measured at 40 sites spread throughout the study region. Fourteen-day samples were taken between March 2002 and March 2003 for each season and site. Annual average concentrations for the sites were determined after adjustment for temporal variation. Information on traffic counts in major roads, building densities and community population figures were collected in a geographical information system (GIS). This information was used to calculate different potential traffic-based predictors: (a) daily traffic flow and maximum traffic intensity of buffers with radii from 50 to 10 000 m and (b) distances to main roads and highways. NO2 concentration and PM2.5 absorbance were strongly correlated with the traffic-based variables. Linear regression prediction models, which involved predictors with radii of 50 to 1000 m, were developed for the Wesel region where most of the cohort members lived. They reached a model fit (R2) of 0.81 and 0.65 for NO2 and PM2.5 absorbance, respectively. Regression models for the whole area required larger spatial scales and reached R2=0.90 and 0.82. Comparison of predicted values with NO2 measurements at independent public monitoring stations showed a satisfactory association (r=0.66). PM2.5 concentration, however, was only slightly correlated and thus poorly predictable by traffic-based variables (r<0.3). We concluded that NO2 and soot can be considered truly traffic-related pollutants, and that GIS-based regression models offer a promising approach to assess individual levels of exposure to these pollutants." @default.
- W2076166095 created "2016-06-24" @default.
- W2076166095 creator A5004570682 @default.
- W2076166095 creator A5028845114 @default.
- W2076166095 creator A5031360454 @default.
- W2076166095 creator A5033538116 @default.
- W2076166095 creator A5036792170 @default.
- W2076166095 creator A5054827246 @default.
- W2076166095 creator A5067224066 @default.
- W2076166095 creator A5086357825 @default.
- W2076166095 date "2006-01-01" @default.
- W2076166095 modified "2023-09-23" @default.
- W2076166095 title "Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information" @default.
- W2076166095 cites W1571356903 @default.
- W2076166095 cites W1979129796 @default.
- W2076166095 cites W2002685456 @default.
- W2076166095 cites W2023625451 @default.
- W2076166095 cites W2051045477 @default.
- W2076166095 cites W2053255375 @default.
- W2076166095 cites W2057978329 @default.
- W2076166095 cites W2084437267 @default.
- W2076166095 cites W2087737072 @default.
- W2076166095 cites W2089688610 @default.
- W2076166095 cites W2090035274 @default.
- W2076166095 cites W2101355853 @default.
- W2076166095 cites W2103206342 @default.
- W2076166095 cites W2110133908 @default.
- W2076166095 cites W2129447215 @default.
- W2076166095 cites W2143982789 @default.
- W2076166095 cites W2146137933 @default.
- W2076166095 cites W2147846348 @default.
- W2076166095 cites W2157261816 @default.
- W2076166095 cites W2158524245 @default.
- W2076166095 cites W2158822760 @default.
- W2076166095 cites W2312753739 @default.
- W2076166095 cites W2318698569 @default.
- W2076166095 doi "https://doi.org/10.1016/j.atmosenv.2005.09.067" @default.
- W2076166095 hasPublicationYear "2006" @default.
- W2076166095 type Work @default.
- W2076166095 sameAs 2076166095 @default.
- W2076166095 citedByCount "125" @default.
- W2076166095 countsByYear W20761660952012 @default.
- W2076166095 countsByYear W20761660952013 @default.
- W2076166095 countsByYear W20761660952014 @default.
- W2076166095 countsByYear W20761660952015 @default.
- W2076166095 countsByYear W20761660952016 @default.
- W2076166095 countsByYear W20761660952017 @default.
- W2076166095 countsByYear W20761660952018 @default.
- W2076166095 countsByYear W20761660952019 @default.
- W2076166095 countsByYear W20761660952020 @default.
- W2076166095 countsByYear W20761660952021 @default.
- W2076166095 countsByYear W20761660952022 @default.
- W2076166095 countsByYear W20761660952023 @default.
- W2076166095 crossrefType "journal-article" @default.
- W2076166095 hasAuthorship W2076166095A5004570682 @default.
- W2076166095 hasAuthorship W2076166095A5028845114 @default.
- W2076166095 hasAuthorship W2076166095A5031360454 @default.
- W2076166095 hasAuthorship W2076166095A5033538116 @default.
- W2076166095 hasAuthorship W2076166095A5036792170 @default.
- W2076166095 hasAuthorship W2076166095A5054827246 @default.
- W2076166095 hasAuthorship W2076166095A5067224066 @default.
- W2076166095 hasAuthorship W2076166095A5086357825 @default.
- W2076166095 hasConcept C105795698 @default.
- W2076166095 hasConcept C127313418 @default.
- W2076166095 hasConcept C127413603 @default.
- W2076166095 hasConcept C152877465 @default.
- W2076166095 hasConcept C153294291 @default.
- W2076166095 hasConcept C167272206 @default.
- W2076166095 hasConcept C178790620 @default.
- W2076166095 hasConcept C185592680 @default.
- W2076166095 hasConcept C205649164 @default.
- W2076166095 hasConcept C2908647359 @default.
- W2076166095 hasConcept C33923547 @default.
- W2076166095 hasConcept C39432304 @default.
- W2076166095 hasConcept C48921125 @default.
- W2076166095 hasConcept C559116025 @default.
- W2076166095 hasConcept C71924100 @default.
- W2076166095 hasConcept C76155785 @default.
- W2076166095 hasConcept C82685317 @default.
- W2076166095 hasConcept C91586092 @default.
- W2076166095 hasConcept C99454951 @default.
- W2076166095 hasConceptScore W2076166095C105795698 @default.
- W2076166095 hasConceptScore W2076166095C127313418 @default.
- W2076166095 hasConceptScore W2076166095C127413603 @default.
- W2076166095 hasConceptScore W2076166095C152877465 @default.
- W2076166095 hasConceptScore W2076166095C153294291 @default.
- W2076166095 hasConceptScore W2076166095C167272206 @default.
- W2076166095 hasConceptScore W2076166095C178790620 @default.
- W2076166095 hasConceptScore W2076166095C185592680 @default.
- W2076166095 hasConceptScore W2076166095C205649164 @default.
- W2076166095 hasConceptScore W2076166095C2908647359 @default.
- W2076166095 hasConceptScore W2076166095C33923547 @default.
- W2076166095 hasConceptScore W2076166095C39432304 @default.
- W2076166095 hasConceptScore W2076166095C48921125 @default.
- W2076166095 hasConceptScore W2076166095C559116025 @default.
- W2076166095 hasConceptScore W2076166095C71924100 @default.
- W2076166095 hasConceptScore W2076166095C76155785 @default.
- W2076166095 hasConceptScore W2076166095C82685317 @default.