Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076196252> ?p ?o ?g. }
- W2076196252 endingPage "80" @default.
- W2076196252 startingPage "69" @default.
- W2076196252 abstract "Soil moisture is an integral quantity in hydrology that represents the average conditions in a finite volume of soil. In this paper, a novel regression technique called Support Vector Machine (SVM) is presented and applied to soil moisture estimation using remote sensing data. SVM is based on statistical learning theory that uses a hypothesis space of linear functions based on Kernel approach. SVM has been used to predict a quantity forward in time based on training from past data. The strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problem. SVM model is applied to 10 sites for soil moisture estimation in the Lower Colorado River Basin (LCRB) in the western United States. The sites comprise low to dense vegetation. Remote sensing data that includes backscatter and incidence angle from Tropical Rainfall Measuring Mission (TRMM), and Normalized Difference Vegetation Index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) are used to estimate soil water content (SM). Simulated SM (%) time series for the study sites are available from the Variable Infiltration Capacity Three Layer (VIC) model for top 10 cm layer of soil for the years 1998–2005. SVM model is trained on 5 years of data, i.e. 1998–2002 and tested on 3 years of data, i.e. 2003–2005. Two models are developed to evaluate the strength of SVM modeling in estimating soil moisture. In model I, training and testing are done on six sites, this results in six separate SVM models – one for each site. Model II comprises of two subparts: (a) data from all six sites used in model I is combined and a single SVM model is developed and tested on same sites and (b) a single model is developed using data from six sites (same as model II-A) but this model is tested on four separate sites not used to train the model. Model I shows satisfactory results, and the SM estimates are in good agreement with the estimates from VIC model. The SM estimate correlation coefficients range from 0.34 to 0.77 with RMSE less than 2% at all the selected sites. A probabilistic absolute error between the VIC SM and modeled SM is computed for all models. For model I, the results indicate that 80% of the SM estimates have an absolute error of less than 5%, whereas for model II-A and II-B, 80% and 60% of the SM estimates have an error less than 10% and 15%, respectively. SVM model is also trained and tested for measured soil moisture in the LCRB. Results with RMSE, MAE and R of 2.01, 1.97, and 0.57, respectively show that the SVM model is able to capture the variability in measured soil moisture. Results from the SVM modeling are compared with the estimates obtained from feed forward-back propagation Artificial Neural Network model (ANN) and Multivariate Linear Regression model (MLR); and show that SVM model performs better for soil moisture estimation than ANN and MLR models." @default.
- W2076196252 created "2016-06-24" @default.
- W2076196252 creator A5040698421 @default.
- W2076196252 creator A5058617857 @default.
- W2076196252 creator A5079141101 @default.
- W2076196252 date "2010-01-01" @default.
- W2076196252 modified "2023-10-18" @default.
- W2076196252 title "Estimating soil moisture using remote sensing data: A machine learning approach" @default.
- W2076196252 cites W1578650557 @default.
- W2076196252 cites W1971984535 @default.
- W2076196252 cites W1973548398 @default.
- W2076196252 cites W1975288608 @default.
- W2076196252 cites W1980597395 @default.
- W2076196252 cites W2000577636 @default.
- W2076196252 cites W2001771035 @default.
- W2076196252 cites W2002067646 @default.
- W2076196252 cites W2004041476 @default.
- W2076196252 cites W2007154098 @default.
- W2076196252 cites W2009067114 @default.
- W2076196252 cites W2012218528 @default.
- W2076196252 cites W2014178376 @default.
- W2076196252 cites W2019451733 @default.
- W2076196252 cites W2020097894 @default.
- W2076196252 cites W2021184758 @default.
- W2076196252 cites W2023567628 @default.
- W2076196252 cites W2024380184 @default.
- W2076196252 cites W2031292142 @default.
- W2076196252 cites W2034956981 @default.
- W2076196252 cites W2036685942 @default.
- W2076196252 cites W2036962776 @default.
- W2076196252 cites W2037931255 @default.
- W2076196252 cites W2050310403 @default.
- W2076196252 cites W2055522016 @default.
- W2076196252 cites W2060560626 @default.
- W2076196252 cites W2068689590 @default.
- W2076196252 cites W2100401723 @default.
- W2076196252 cites W2114118532 @default.
- W2076196252 cites W2114331883 @default.
- W2076196252 cites W2118527969 @default.
- W2076196252 cites W2122389133 @default.
- W2076196252 cites W2126561446 @default.
- W2076196252 cites W2132995696 @default.
- W2076196252 cites W2133013453 @default.
- W2076196252 cites W2133422217 @default.
- W2076196252 cites W2136473800 @default.
- W2076196252 cites W2136630510 @default.
- W2076196252 cites W2137310696 @default.
- W2076196252 cites W2148105996 @default.
- W2076196252 cites W2148557261 @default.
- W2076196252 cites W2160645080 @default.
- W2076196252 cites W2170625756 @default.
- W2076196252 cites W2172877736 @default.
- W2076196252 cites W3017323153 @default.
- W2076196252 cites W3018770027 @default.
- W2076196252 cites W4238284510 @default.
- W2076196252 doi "https://doi.org/10.1016/j.advwatres.2009.10.008" @default.
- W2076196252 hasPublicationYear "2010" @default.
- W2076196252 type Work @default.
- W2076196252 sameAs 2076196252 @default.
- W2076196252 citedByCount "340" @default.
- W2076196252 countsByYear W20761962522012 @default.
- W2076196252 countsByYear W20761962522013 @default.
- W2076196252 countsByYear W20761962522014 @default.
- W2076196252 countsByYear W20761962522015 @default.
- W2076196252 countsByYear W20761962522016 @default.
- W2076196252 countsByYear W20761962522017 @default.
- W2076196252 countsByYear W20761962522018 @default.
- W2076196252 countsByYear W20761962522019 @default.
- W2076196252 countsByYear W20761962522020 @default.
- W2076196252 countsByYear W20761962522021 @default.
- W2076196252 countsByYear W20761962522022 @default.
- W2076196252 countsByYear W20761962522023 @default.
- W2076196252 crossrefType "journal-article" @default.
- W2076196252 hasAuthorship W2076196252A5040698421 @default.
- W2076196252 hasAuthorship W2076196252A5058617857 @default.
- W2076196252 hasAuthorship W2076196252A5079141101 @default.
- W2076196252 hasConcept C111368507 @default.
- W2076196252 hasConcept C119857082 @default.
- W2076196252 hasConcept C12267149 @default.
- W2076196252 hasConcept C127313418 @default.
- W2076196252 hasConcept C132651083 @default.
- W2076196252 hasConcept C1549246 @default.
- W2076196252 hasConcept C159390177 @default.
- W2076196252 hasConcept C187320778 @default.
- W2076196252 hasConcept C205649164 @default.
- W2076196252 hasConcept C24939127 @default.
- W2076196252 hasConcept C39432304 @default.
- W2076196252 hasConcept C41008148 @default.
- W2076196252 hasConcept C62649853 @default.
- W2076196252 hasConceptScore W2076196252C111368507 @default.
- W2076196252 hasConceptScore W2076196252C119857082 @default.
- W2076196252 hasConceptScore W2076196252C12267149 @default.
- W2076196252 hasConceptScore W2076196252C127313418 @default.
- W2076196252 hasConceptScore W2076196252C132651083 @default.
- W2076196252 hasConceptScore W2076196252C1549246 @default.
- W2076196252 hasConceptScore W2076196252C159390177 @default.
- W2076196252 hasConceptScore W2076196252C187320778 @default.
- W2076196252 hasConceptScore W2076196252C205649164 @default.