Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076210581> ?p ?o ?g. }
- W2076210581 endingPage "390" @default.
- W2076210581 startingPage "377" @default.
- W2076210581 abstract "In this work we present two new approaches for constructing phylogenetic trees. The input is a list of weighted quartets over n taxa. Each quartet is a subtree on four taxa, and its weight represents a confidence level for the specific topology. The goal is to construct a binary tree with n leaves such that the total weight of the satisfied quartets is maximized (an NP hard problem). The first approach we present is based on geometric ideas. Using semidefinite programming, we embed the n points on the n-dimensional unit sphere, while maximizing an objective function. This function depends on Euclidean distances between the four points and reflects the quartet topology. Given the embedding, we construct a binary tree by performing geometric clustering. This process is similar to the traditional neighbor joining, with the difference that the update phase retains geometric meaning: When two neighbors are joined together, their common ancestor is taken to be the center of mass of the original points. The geometric algorithm runs in poly(n) time, but there are no guarantees on the quality of its output. In contrast, our second algorithm is based on dynamic programming, and it is guaranteed to find the optimal tree (with respect to the given quartets). Its running time is a modest exponential, so it can be implemented for modest values of n. We have implemented both algorithms and ran them on real data for n = 15 taxa (14 mammalian orders and an outgroup taxon). The two resulting trees improve previously published trees and seem to be of biological relevance. On this dataset, the geometric algorithm produced a tree whose score is 98.2% of the optimal value on this input set (72.1% vs. 73.4%). This gives rise to the hope that the geometric approach will prove viable even for larger cases where the exponential, dynamic programming approach is no longer feasible." @default.
- W2076210581 created "2016-06-24" @default.
- W2076210581 creator A5026012663 @default.
- W2076210581 creator A5029261997 @default.
- W2076210581 creator A5054099084 @default.
- W2076210581 creator A5059847817 @default.
- W2076210581 creator A5080491347 @default.
- W2076210581 date "1998-01-01" @default.
- W2076210581 modified "2023-09-28" @default.
- W2076210581 title "Constructing Phylogenies from Quartets: Elucidation of Eutherian Superordinal Relationships" @default.
- W2076210581 cites W108464071 @default.
- W2076210581 cites W1966786019 @default.
- W2076210581 cites W1968248848 @default.
- W2076210581 cites W1973912434 @default.
- W2076210581 cites W1982840479 @default.
- W2076210581 cites W1985064024 @default.
- W2076210581 cites W1996835973 @default.
- W2076210581 cites W2003087810 @default.
- W2076210581 cites W2025489760 @default.
- W2076210581 cites W2041076979 @default.
- W2076210581 cites W2042959539 @default.
- W2076210581 cites W2043887813 @default.
- W2076210581 cites W2063491776 @default.
- W2076210581 cites W2075503802 @default.
- W2076210581 cites W2078650268 @default.
- W2076210581 cites W2083213362 @default.
- W2076210581 cites W2091901265 @default.
- W2076210581 cites W2106882534 @default.
- W2076210581 cites W2120398510 @default.
- W2076210581 cites W2156072431 @default.
- W2076210581 cites W2164997158 @default.
- W2076210581 cites W2167652284 @default.
- W2076210581 cites W4254244103 @default.
- W2076210581 cites W4254275792 @default.
- W2076210581 cites W4254717640 @default.
- W2076210581 doi "https://doi.org/10.1089/cmb.1998.5.377" @default.
- W2076210581 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9773339" @default.
- W2076210581 hasPublicationYear "1998" @default.
- W2076210581 type Work @default.
- W2076210581 sameAs 2076210581 @default.
- W2076210581 citedByCount "40" @default.
- W2076210581 countsByYear W20762105812012 @default.
- W2076210581 countsByYear W20762105812013 @default.
- W2076210581 countsByYear W20762105812014 @default.
- W2076210581 countsByYear W20762105812016 @default.
- W2076210581 countsByYear W20762105812019 @default.
- W2076210581 countsByYear W20762105812020 @default.
- W2076210581 countsByYear W20762105812023 @default.
- W2076210581 crossrefType "journal-article" @default.
- W2076210581 hasAuthorship W2076210581A5026012663 @default.
- W2076210581 hasAuthorship W2076210581A5029261997 @default.
- W2076210581 hasAuthorship W2076210581A5054099084 @default.
- W2076210581 hasAuthorship W2076210581A5059847817 @default.
- W2076210581 hasAuthorship W2076210581A5080491347 @default.
- W2076210581 hasConcept C104317684 @default.
- W2076210581 hasConcept C105795698 @default.
- W2076210581 hasConcept C113174947 @default.
- W2076210581 hasConcept C11413529 @default.
- W2076210581 hasConcept C114614502 @default.
- W2076210581 hasConcept C118615104 @default.
- W2076210581 hasConcept C129782007 @default.
- W2076210581 hasConcept C14036430 @default.
- W2076210581 hasConcept C154945302 @default.
- W2076210581 hasConcept C193252679 @default.
- W2076210581 hasConcept C197855036 @default.
- W2076210581 hasConcept C199360897 @default.
- W2076210581 hasConcept C2524010 @default.
- W2076210581 hasConcept C2780801425 @default.
- W2076210581 hasConcept C33923547 @default.
- W2076210581 hasConcept C41008148 @default.
- W2076210581 hasConcept C41608201 @default.
- W2076210581 hasConcept C48372109 @default.
- W2076210581 hasConcept C55493867 @default.
- W2076210581 hasConcept C73555534 @default.
- W2076210581 hasConcept C78458016 @default.
- W2076210581 hasConcept C86803240 @default.
- W2076210581 hasConcept C94375191 @default.
- W2076210581 hasConceptScore W2076210581C104317684 @default.
- W2076210581 hasConceptScore W2076210581C105795698 @default.
- W2076210581 hasConceptScore W2076210581C113174947 @default.
- W2076210581 hasConceptScore W2076210581C11413529 @default.
- W2076210581 hasConceptScore W2076210581C114614502 @default.
- W2076210581 hasConceptScore W2076210581C118615104 @default.
- W2076210581 hasConceptScore W2076210581C129782007 @default.
- W2076210581 hasConceptScore W2076210581C14036430 @default.
- W2076210581 hasConceptScore W2076210581C154945302 @default.
- W2076210581 hasConceptScore W2076210581C193252679 @default.
- W2076210581 hasConceptScore W2076210581C197855036 @default.
- W2076210581 hasConceptScore W2076210581C199360897 @default.
- W2076210581 hasConceptScore W2076210581C2524010 @default.
- W2076210581 hasConceptScore W2076210581C2780801425 @default.
- W2076210581 hasConceptScore W2076210581C33923547 @default.
- W2076210581 hasConceptScore W2076210581C41008148 @default.
- W2076210581 hasConceptScore W2076210581C41608201 @default.
- W2076210581 hasConceptScore W2076210581C48372109 @default.
- W2076210581 hasConceptScore W2076210581C55493867 @default.
- W2076210581 hasConceptScore W2076210581C73555534 @default.
- W2076210581 hasConceptScore W2076210581C78458016 @default.