Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076333608> ?p ?o ?g. }
- W2076333608 endingPage "200" @default.
- W2076333608 startingPage "181" @default.
- W2076333608 abstract "The two-component methods of relativistic quantum chemistry based on the Foldy–Wouthuysen (FW) transformations of the Dirac hamiltonian are reviewed. Following the strategy designed by Douglas and Kroll, the FW transformation is carried out in two steps. The first amounts to performing the exact free-particle FW transformation. At variance with other approaches, the second step is written in the form, which results in a nonlinear operator equation. This equation can be solved iteratively, leading to two-component hamiltonians of arbitrarily high accuracy in even powers of the fine structure constant. All these hamiltonians can be classified according to their completeness with respect to the leading order in the fine structure constant. On passing to the basis set representation one obtains the usual Douglas–Kroll hamiltonian and all possible higher-order approximations. By a simple modification of the operator equation which determines the block-diagonalizing transformation one can obtain numerical infinite-order solutions, i.e. one can obtain the exact numerical solution for the separation of the pure electronic part of the Dirac spectrum. This gives the exact two-component method for the use in relativistic quantum chemistry. The computational aspects of this approach are discussed as well. The transition from the Dirac formalism to any two-component approximation is accompanied by the change of all operators, including those which correspond to external perturbations and lead to properties of different orders. This so-called change of picture problem is given particular attention and its importance for certain operators is identified." @default.
- W2076333608 created "2016-06-24" @default.
- W2076333608 creator A5029194156 @default.
- W2076333608 creator A5059489199 @default.
- W2076333608 date "2001-10-01" @default.
- W2076333608 modified "2023-09-30" @default.
- W2076333608 title "Two-component methods of relativistic quantum chemistry: from the Douglas–Kroll approximation to the exact two-component formalism" @default.
- W2076333608 cites W1024851856 @default.
- W2076333608 cites W1481889201 @default.
- W2076333608 cites W1483386803 @default.
- W2076333608 cites W1557916006 @default.
- W2076333608 cites W1568770235 @default.
- W2076333608 cites W1586708757 @default.
- W2076333608 cites W1667820781 @default.
- W2076333608 cites W1720713552 @default.
- W2076333608 cites W1964301336 @default.
- W2076333608 cites W1964337872 @default.
- W2076333608 cites W1965272987 @default.
- W2076333608 cites W1965880609 @default.
- W2076333608 cites W1966938238 @default.
- W2076333608 cites W1968353976 @default.
- W2076333608 cites W1977818169 @default.
- W2076333608 cites W1979459237 @default.
- W2076333608 cites W1991664366 @default.
- W2076333608 cites W1993276039 @default.
- W2076333608 cites W1994338540 @default.
- W2076333608 cites W1995282189 @default.
- W2076333608 cites W1997041494 @default.
- W2076333608 cites W1997698033 @default.
- W2076333608 cites W1999684739 @default.
- W2076333608 cites W2002232506 @default.
- W2076333608 cites W2009304399 @default.
- W2076333608 cites W2009761749 @default.
- W2076333608 cites W2012737856 @default.
- W2076333608 cites W2013182635 @default.
- W2076333608 cites W2014581276 @default.
- W2076333608 cites W2017344081 @default.
- W2076333608 cites W2020108286 @default.
- W2076333608 cites W2030911866 @default.
- W2076333608 cites W2030965733 @default.
- W2076333608 cites W2031422294 @default.
- W2076333608 cites W2035224123 @default.
- W2076333608 cites W2035330537 @default.
- W2076333608 cites W2036205120 @default.
- W2076333608 cites W2037251538 @default.
- W2076333608 cites W2040833793 @default.
- W2076333608 cites W2040872170 @default.
- W2076333608 cites W2043003810 @default.
- W2076333608 cites W2045093486 @default.
- W2076333608 cites W2047171873 @default.
- W2076333608 cites W2047258442 @default.
- W2076333608 cites W2049997847 @default.
- W2076333608 cites W2050889869 @default.
- W2076333608 cites W2051277339 @default.
- W2076333608 cites W2052312990 @default.
- W2076333608 cites W2059070402 @default.
- W2076333608 cites W2061032212 @default.
- W2076333608 cites W2064493482 @default.
- W2076333608 cites W2067899483 @default.
- W2076333608 cites W2073500861 @default.
- W2076333608 cites W2078057866 @default.
- W2076333608 cites W2078445979 @default.
- W2076333608 cites W2078929937 @default.
- W2076333608 cites W2079074270 @default.
- W2076333608 cites W2080184808 @default.
- W2076333608 cites W2080254914 @default.
- W2076333608 cites W2083102925 @default.
- W2076333608 cites W2083635765 @default.
- W2076333608 cites W2085150881 @default.
- W2076333608 cites W2086160352 @default.
- W2076333608 cites W2086581442 @default.
- W2076333608 cites W2087209204 @default.
- W2076333608 cites W2087788670 @default.
- W2076333608 cites W2088417114 @default.
- W2076333608 cites W2095374362 @default.
- W2076333608 cites W2106476248 @default.
- W2076333608 cites W2108446403 @default.
- W2076333608 cites W2113084681 @default.
- W2076333608 cites W2125790166 @default.
- W2076333608 cites W2126952850 @default.
- W2076333608 cites W2135261637 @default.
- W2076333608 cites W2152638263 @default.
- W2076333608 cites W2157526400 @default.
- W2076333608 cites W2160918298 @default.
- W2076333608 cites W2166198169 @default.
- W2076333608 cites W2240809602 @default.
- W2076333608 cites W3157444356 @default.
- W2076333608 cites W4237183526 @default.
- W2076333608 doi "https://doi.org/10.1016/s0166-1280(01)00542-5" @default.
- W2076333608 hasPublicationYear "2001" @default.
- W2076333608 type Work @default.
- W2076333608 sameAs 2076333608 @default.
- W2076333608 citedByCount "193" @default.
- W2076333608 countsByYear W20763336082012 @default.
- W2076333608 countsByYear W20763336082013 @default.
- W2076333608 countsByYear W20763336082014 @default.
- W2076333608 countsByYear W20763336082015 @default.
- W2076333608 countsByYear W20763336082016 @default.