Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076346323> ?p ?o ?g. }
- W2076346323 endingPage "1504" @default.
- W2076346323 startingPage "1484" @default.
- W2076346323 abstract "A modified active subset selection method based on quadratic Rényi entropy and a fast cross-validation for fixed-size least squares support vector machines is proposed for classification and regression with optimized tuning process. The kernel bandwidth of the entropy based selection criterion is optimally determined according to the solve-the-equation plug-in method. Also a fast cross-validation method based on a simple updating scheme is developed. The combination of these two techniques is suitable for handling large scale data sets on standard personal computers. Finally, the performance on test data and computational time of this fixed-size method are compared to those for standard support vector machines and ν-support vector machines resulting in sparser models with lower computational cost and comparable accuracy." @default.
- W2076346323 created "2016-06-24" @default.
- W2076346323 creator A5018814006 @default.
- W2076346323 creator A5032425845 @default.
- W2076346323 creator A5059409711 @default.
- W2076346323 creator A5078854904 @default.
- W2076346323 date "2010-06-01" @default.
- W2076346323 modified "2023-09-27" @default.
- W2076346323 title "Optimized fixed-size kernel models for large data sets" @default.
- W2076346323 cites W1511988855 @default.
- W2076346323 cites W1516254868 @default.
- W2076346323 cites W1540007258 @default.
- W2076346323 cites W1596717185 @default.
- W2076346323 cites W1839113334 @default.
- W2076346323 cites W1973071048 @default.
- W2076346323 cites W1973650920 @default.
- W2076346323 cites W1984499217 @default.
- W2076346323 cites W1995875735 @default.
- W2076346323 cites W1998378660 @default.
- W2076346323 cites W1998749012 @default.
- W2076346323 cites W2001506129 @default.
- W2076346323 cites W2020867051 @default.
- W2076346323 cites W2024991751 @default.
- W2076346323 cites W2029450582 @default.
- W2076346323 cites W2030147727 @default.
- W2076346323 cites W2030605379 @default.
- W2076346323 cites W2033351162 @default.
- W2076346323 cites W2045517669 @default.
- W2076346323 cites W2052888998 @default.
- W2076346323 cites W2069659771 @default.
- W2076346323 cites W2082624758 @default.
- W2076346323 cites W2084461292 @default.
- W2076346323 cites W2096994080 @default.
- W2076346323 cites W2109816097 @default.
- W2076346323 cites W2113584252 @default.
- W2076346323 cites W2117063635 @default.
- W2076346323 cites W2118113396 @default.
- W2076346323 cites W2120704373 @default.
- W2076346323 cites W2125126592 @default.
- W2076346323 cites W2128255043 @default.
- W2076346323 cites W2132166479 @default.
- W2076346323 cites W2143684265 @default.
- W2076346323 cites W2151388232 @default.
- W2076346323 cites W2151572595 @default.
- W2076346323 cites W2159529227 @default.
- W2076346323 cites W2161920802 @default.
- W2076346323 cites W2168175751 @default.
- W2076346323 cites W2169273280 @default.
- W2076346323 cites W2171074980 @default.
- W2076346323 cites W3151807555 @default.
- W2076346323 cites W4230924809 @default.
- W2076346323 cites W4232203977 @default.
- W2076346323 cites W4243797702 @default.
- W2076346323 cites W4246048519 @default.
- W2076346323 cites W4246887267 @default.
- W2076346323 cites W4252979015 @default.
- W2076346323 doi "https://doi.org/10.1016/j.csda.2010.01.024" @default.
- W2076346323 hasPublicationYear "2010" @default.
- W2076346323 type Work @default.
- W2076346323 sameAs 2076346323 @default.
- W2076346323 citedByCount "94" @default.
- W2076346323 countsByYear W20763463232012 @default.
- W2076346323 countsByYear W20763463232013 @default.
- W2076346323 countsByYear W20763463232014 @default.
- W2076346323 countsByYear W20763463232015 @default.
- W2076346323 countsByYear W20763463232016 @default.
- W2076346323 countsByYear W20763463232017 @default.
- W2076346323 countsByYear W20763463232018 @default.
- W2076346323 countsByYear W20763463232019 @default.
- W2076346323 countsByYear W20763463232020 @default.
- W2076346323 countsByYear W20763463232021 @default.
- W2076346323 countsByYear W20763463232022 @default.
- W2076346323 countsByYear W20763463232023 @default.
- W2076346323 crossrefType "journal-article" @default.
- W2076346323 hasAuthorship W2076346323A5018814006 @default.
- W2076346323 hasAuthorship W2076346323A5032425845 @default.
- W2076346323 hasAuthorship W2076346323A5059409711 @default.
- W2076346323 hasAuthorship W2076346323A5078854904 @default.
- W2076346323 hasConcept C105795698 @default.
- W2076346323 hasConcept C106301342 @default.
- W2076346323 hasConcept C11413529 @default.
- W2076346323 hasConcept C114614502 @default.
- W2076346323 hasConcept C121332964 @default.
- W2076346323 hasConcept C122280245 @default.
- W2076346323 hasConcept C12267149 @default.
- W2076346323 hasConcept C126255220 @default.
- W2076346323 hasConcept C145828037 @default.
- W2076346323 hasConcept C154945302 @default.
- W2076346323 hasConcept C27181475 @default.
- W2076346323 hasConcept C33923547 @default.
- W2076346323 hasConcept C41008148 @default.
- W2076346323 hasConcept C62520636 @default.
- W2076346323 hasConcept C74193536 @default.
- W2076346323 hasConcept C93959086 @default.
- W2076346323 hasConceptScore W2076346323C105795698 @default.
- W2076346323 hasConceptScore W2076346323C106301342 @default.
- W2076346323 hasConceptScore W2076346323C11413529 @default.
- W2076346323 hasConceptScore W2076346323C114614502 @default.