Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076440176> ?p ?o ?g. }
- W2076440176 abstract "Recurrent neural networks (RNNs) have recently produced record setting performance in language modeling and word-labeling tasks. In the word-labeling task, the RNN is used analogously to the more traditional conditional random field (CRF) to assign a label to each word in an input sequence, and has been shown to significantly outperform CRFs. In contrast to CRFs, RNNs operate in an online fashion to assign labels as soon as a word is seen, rather than after seeing the whole word sequence. In this paper, we show that the performance of an RNN tagger can be significantly improved by incorporating elements of the CRF model; specifically, the explicit modeling of output-label dependencies with transition features, its global sequence-level objective function, and offline decoding. We term the resulting model a “recurrent conditional random field” and demonstrate its effectiveness on the ATIS travel domain dataset and a variety of web-search language understanding datasets." @default.
- W2076440176 created "2016-06-24" @default.
- W2076440176 creator A5014133786 @default.
- W2076440176 creator A5034476404 @default.
- W2076440176 creator A5045500611 @default.
- W2076440176 creator A5065688486 @default.
- W2076440176 creator A5066404470 @default.
- W2076440176 creator A5069954850 @default.
- W2076440176 date "2014-05-01" @default.
- W2076440176 modified "2023-10-14" @default.
- W2076440176 title "Recurrent conditional random field for language understanding" @default.
- W2076440176 cites W179875071 @default.
- W2076440176 cites W1965154800 @default.
- W2076440176 cites W1970689298 @default.
- W2076440176 cites W1993331241 @default.
- W2076440176 cites W1999965501 @default.
- W2076440176 cites W2047237057 @default.
- W2076440176 cites W2077302143 @default.
- W2076440176 cites W2091671846 @default.
- W2076440176 cites W2094472029 @default.
- W2076440176 cites W2104408895 @default.
- W2076440176 cites W2108366050 @default.
- W2076440176 cites W2123131857 @default.
- W2076440176 cites W2132339004 @default.
- W2076440176 cites W2141778357 @default.
- W2076440176 cites W2143719855 @default.
- W2076440176 cites W2155524666 @default.
- W2076440176 cites W2156193287 @default.
- W2076440176 cites W2170198242 @default.
- W2076440176 cites W2171928131 @default.
- W2076440176 cites W2185726469 @default.
- W2076440176 cites W2403195671 @default.
- W2076440176 cites W3140710042 @default.
- W2076440176 cites W4254816979 @default.
- W2076440176 doi "https://doi.org/10.1109/icassp.2014.6854368" @default.
- W2076440176 hasPublicationYear "2014" @default.
- W2076440176 type Work @default.
- W2076440176 sameAs 2076440176 @default.
- W2076440176 citedByCount "85" @default.
- W2076440176 countsByYear W20764401762014 @default.
- W2076440176 countsByYear W20764401762015 @default.
- W2076440176 countsByYear W20764401762016 @default.
- W2076440176 countsByYear W20764401762017 @default.
- W2076440176 countsByYear W20764401762018 @default.
- W2076440176 countsByYear W20764401762019 @default.
- W2076440176 countsByYear W20764401762020 @default.
- W2076440176 countsByYear W20764401762021 @default.
- W2076440176 countsByYear W20764401762022 @default.
- W2076440176 countsByYear W20764401762023 @default.
- W2076440176 crossrefType "proceedings-article" @default.
- W2076440176 hasAuthorship W2076440176A5014133786 @default.
- W2076440176 hasAuthorship W2076440176A5034476404 @default.
- W2076440176 hasAuthorship W2076440176A5045500611 @default.
- W2076440176 hasAuthorship W2076440176A5065688486 @default.
- W2076440176 hasAuthorship W2076440176A5066404470 @default.
- W2076440176 hasAuthorship W2076440176A5069954850 @default.
- W2076440176 hasConcept C11413529 @default.
- W2076440176 hasConcept C137293760 @default.
- W2076440176 hasConcept C147168706 @default.
- W2076440176 hasConcept C152565575 @default.
- W2076440176 hasConcept C154945302 @default.
- W2076440176 hasConcept C162324750 @default.
- W2076440176 hasConcept C187736073 @default.
- W2076440176 hasConcept C202444582 @default.
- W2076440176 hasConcept C204321447 @default.
- W2076440176 hasConcept C2524010 @default.
- W2076440176 hasConcept C2775953691 @default.
- W2076440176 hasConcept C2778112365 @default.
- W2076440176 hasConcept C2779135771 @default.
- W2076440176 hasConcept C2780451532 @default.
- W2076440176 hasConcept C28490314 @default.
- W2076440176 hasConcept C33923547 @default.
- W2076440176 hasConcept C35639132 @default.
- W2076440176 hasConcept C41008148 @default.
- W2076440176 hasConcept C50644808 @default.
- W2076440176 hasConcept C54355233 @default.
- W2076440176 hasConcept C57273362 @default.
- W2076440176 hasConcept C86803240 @default.
- W2076440176 hasConcept C90805587 @default.
- W2076440176 hasConcept C9652623 @default.
- W2076440176 hasConceptScore W2076440176C11413529 @default.
- W2076440176 hasConceptScore W2076440176C137293760 @default.
- W2076440176 hasConceptScore W2076440176C147168706 @default.
- W2076440176 hasConceptScore W2076440176C152565575 @default.
- W2076440176 hasConceptScore W2076440176C154945302 @default.
- W2076440176 hasConceptScore W2076440176C162324750 @default.
- W2076440176 hasConceptScore W2076440176C187736073 @default.
- W2076440176 hasConceptScore W2076440176C202444582 @default.
- W2076440176 hasConceptScore W2076440176C204321447 @default.
- W2076440176 hasConceptScore W2076440176C2524010 @default.
- W2076440176 hasConceptScore W2076440176C2775953691 @default.
- W2076440176 hasConceptScore W2076440176C2778112365 @default.
- W2076440176 hasConceptScore W2076440176C2779135771 @default.
- W2076440176 hasConceptScore W2076440176C2780451532 @default.
- W2076440176 hasConceptScore W2076440176C28490314 @default.
- W2076440176 hasConceptScore W2076440176C33923547 @default.
- W2076440176 hasConceptScore W2076440176C35639132 @default.
- W2076440176 hasConceptScore W2076440176C41008148 @default.
- W2076440176 hasConceptScore W2076440176C50644808 @default.
- W2076440176 hasConceptScore W2076440176C54355233 @default.