Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076454423> ?p ?o ?g. }
- W2076454423 endingPage "29" @default.
- W2076454423 startingPage "22" @default.
- W2076454423 abstract "Rough set theory is one of the effective methods to feature selection which can preserve the characteristics of the original features by deleting redundant information. The main idea of rough set approach to feature selection is to find a globally minimal reduct, the smallest set of features keeping important information of the original set of features. Rough set theory has been used as a dataset preprocessor with much success, but current approaches to feature selection are inadequate for finding a globally minimal reduct. In this paper, we propose a novel rough set based method to feature selection using fish swarm algorithm. The fish swarm algorithm is a new intelligent swarm modeling approach that consists primarily of searching, swarming, and following behaviors. It is attractive for feature selection since fish swarms can discover the best combination of features as they swim within the subset space. In our proposed algorithm, a minimal subset can be located and verified. To show the efficiency of our algorithm, we carry out numerical experiments based on some standard UCI datasets. The results demonstrate that our algorithm can provide an efficient tool for finding a minimal subset of the features without information loss." @default.
- W2076454423 created "2016-06-24" @default.
- W2076454423 creator A5014920935 @default.
- W2076454423 creator A5036754312 @default.
- W2076454423 creator A5062153725 @default.
- W2076454423 date "2015-06-01" @default.
- W2076454423 modified "2023-10-02" @default.
- W2076454423 title "Finding rough set reducts with fish swarm algorithm" @default.
- W2076454423 cites W1525890289 @default.
- W2076454423 cites W1892848734 @default.
- W2076454423 cites W1963626514 @default.
- W2076454423 cites W1964980811 @default.
- W2076454423 cites W1983380373 @default.
- W2076454423 cites W1983426508 @default.
- W2076454423 cites W2003534215 @default.
- W2076454423 cites W2007262119 @default.
- W2076454423 cites W2023441160 @default.
- W2076454423 cites W2024638676 @default.
- W2076454423 cites W2039742983 @default.
- W2076454423 cites W2041193317 @default.
- W2076454423 cites W2046204418 @default.
- W2076454423 cites W2047421440 @default.
- W2076454423 cites W2050699786 @default.
- W2076454423 cites W2057532020 @default.
- W2076454423 cites W2066150658 @default.
- W2076454423 cites W2079680557 @default.
- W2076454423 cites W2086876270 @default.
- W2076454423 cites W2098093602 @default.
- W2076454423 cites W2109364787 @default.
- W2076454423 cites W2117460374 @default.
- W2076454423 cites W2122937613 @default.
- W2076454423 cites W2132868912 @default.
- W2076454423 cites W2133462743 @default.
- W2076454423 cites W2168523997 @default.
- W2076454423 cites W2912707296 @default.
- W2076454423 cites W4255833381 @default.
- W2076454423 doi "https://doi.org/10.1016/j.knosys.2015.02.002" @default.
- W2076454423 hasPublicationYear "2015" @default.
- W2076454423 type Work @default.
- W2076454423 sameAs 2076454423 @default.
- W2076454423 citedByCount "100" @default.
- W2076454423 countsByYear W20764544232015 @default.
- W2076454423 countsByYear W20764544232016 @default.
- W2076454423 countsByYear W20764544232017 @default.
- W2076454423 countsByYear W20764544232018 @default.
- W2076454423 countsByYear W20764544232019 @default.
- W2076454423 countsByYear W20764544232020 @default.
- W2076454423 countsByYear W20764544232021 @default.
- W2076454423 countsByYear W20764544232022 @default.
- W2076454423 countsByYear W20764544232023 @default.
- W2076454423 crossrefType "journal-article" @default.
- W2076454423 hasAuthorship W2076454423A5014920935 @default.
- W2076454423 hasAuthorship W2076454423A5036754312 @default.
- W2076454423 hasAuthorship W2076454423A5062153725 @default.
- W2076454423 hasConcept C111012933 @default.
- W2076454423 hasConcept C11413529 @default.
- W2076454423 hasConcept C124101348 @default.
- W2076454423 hasConcept C138885662 @default.
- W2076454423 hasConcept C148483581 @default.
- W2076454423 hasConcept C153180895 @default.
- W2076454423 hasConcept C154945302 @default.
- W2076454423 hasConcept C177264268 @default.
- W2076454423 hasConcept C181335050 @default.
- W2076454423 hasConcept C199360897 @default.
- W2076454423 hasConcept C2776401178 @default.
- W2076454423 hasConcept C34736171 @default.
- W2076454423 hasConcept C41008148 @default.
- W2076454423 hasConcept C41895202 @default.
- W2076454423 hasConcept C69177213 @default.
- W2076454423 hasConcept C81917197 @default.
- W2076454423 hasConceptScore W2076454423C111012933 @default.
- W2076454423 hasConceptScore W2076454423C11413529 @default.
- W2076454423 hasConceptScore W2076454423C124101348 @default.
- W2076454423 hasConceptScore W2076454423C138885662 @default.
- W2076454423 hasConceptScore W2076454423C148483581 @default.
- W2076454423 hasConceptScore W2076454423C153180895 @default.
- W2076454423 hasConceptScore W2076454423C154945302 @default.
- W2076454423 hasConceptScore W2076454423C177264268 @default.
- W2076454423 hasConceptScore W2076454423C181335050 @default.
- W2076454423 hasConceptScore W2076454423C199360897 @default.
- W2076454423 hasConceptScore W2076454423C2776401178 @default.
- W2076454423 hasConceptScore W2076454423C34736171 @default.
- W2076454423 hasConceptScore W2076454423C41008148 @default.
- W2076454423 hasConceptScore W2076454423C41895202 @default.
- W2076454423 hasConceptScore W2076454423C69177213 @default.
- W2076454423 hasConceptScore W2076454423C81917197 @default.
- W2076454423 hasFunder F4320321001 @default.
- W2076454423 hasFunder F4320321543 @default.
- W2076454423 hasLocation W20764544231 @default.
- W2076454423 hasOpenAccess W2076454423 @default.
- W2076454423 hasPrimaryLocation W20764544231 @default.
- W2076454423 hasRelatedWork W2005943617 @default.
- W2076454423 hasRelatedWork W2047235170 @default.
- W2076454423 hasRelatedWork W2117389543 @default.
- W2076454423 hasRelatedWork W2374000300 @default.
- W2076454423 hasRelatedWork W2375301348 @default.
- W2076454423 hasRelatedWork W2521521467 @default.
- W2076454423 hasRelatedWork W2566496375 @default.