Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076456931> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2076456931 endingPage "745" @default.
- W2076456931 startingPage "729" @default.
- W2076456931 abstract "Bloch, and later H. Cartan, showed that if H H, . I +2 are n + 2 hyperplanes in general position in complex projective space Pn, then Pn -Hi U ... U Hn+2 is (in current terminology) hyperbolic modulo A, where A is the union of the hyperplanes (H1 n... n Hk) D (Hk+ln n... Hn+2) for 2 2. Using the method of negative curvature, we give an explicit model for the Kobayashi metric when n = 2. Pour arriver a des resultats d'ordre quantatif, il faudrait construire... la fonction modulaire. Henri Cartan 1928 0. INTRODUCTION For a compact complex manifold M, Brody [5] has given a simple criterion for hyperbolicity: M is hyperbolic if and only if every holomorphic map f: C -* M is constant. For noncompact manifolds, hyperbolicity is much more difficult to establish, as Brody's Theorem is false (Green's example, see [14]). The situation is even more complicated for hyperbolicity modulo a subset, the most general case. For example, let D be a divisor on Pn, let X = Pn-D, and let Y be a proper subvariety of Pn . We say that X is hyperbolic modulo Y, if the Kobayashi distance dx satisfies dx(x, y) > 0 for all x, y distinct and not both in Y. If every nonconstant holomorphic map f: C X lies in the subvariety Y, then X is called Brody hyperbolic modulo Y [14]. It is unknown if Brody hyperbolicity modulo Y implies hyperbolicity modulo Y when X = Pn -D; a modification of Green's example shows this is false if Pn is replaced by an arbitrary variety. Furthermore, the results so far for hyperbolicity modulo Y are mostly qualitative, giving little insight into the quantitative behavior of the Kobayashi metric, which approaches 0 near Y in the tangent directions to Y. In this paper we give an explicit model for the Kobayashi metric on a particular X, namely P2 minus 4 lines. We prove that the model does indeed Received by the editors December 30, 1987 and, in revised form, September 1, 1988. 1980 Mathematics Subject Classification (1985 Revision). Primary 32H20. Supported in part by NSF grant DMS-8602197. i 1990 American Mathematical Society 0002-9947/90 $1.00+ $.25 perpage" @default.
- W2076456931 created "2016-06-24" @default.
- W2076456931 creator A5066619851 @default.
- W2076456931 date "1990-02-01" @default.
- W2076456931 modified "2023-09-27" @default.
- W2076456931 title "The method of negative curvature: the Kobayashi metric on ${bf P}sb 2$ minus $4$ lines" @default.
- W2076456931 cites W144668373 @default.
- W2076456931 cites W1479762509 @default.
- W2076456931 cites W1519893382 @default.
- W2076456931 cites W1562409733 @default.
- W2076456931 cites W1705779857 @default.
- W2076456931 cites W1807120443 @default.
- W2076456931 cites W1964593314 @default.
- W2076456931 cites W1975225295 @default.
- W2076456931 cites W2037122296 @default.
- W2076456931 cites W2071932383 @default.
- W2076456931 cites W2091382452 @default.
- W2076456931 cites W2326882064 @default.
- W2076456931 cites W2599913422 @default.
- W2076456931 cites W619189744 @default.
- W2076456931 cites W2048187395 @default.
- W2076456931 doi "https://doi.org/10.1090/s0002-9947-1990-0958888-x" @default.
- W2076456931 hasPublicationYear "1990" @default.
- W2076456931 type Work @default.
- W2076456931 sameAs 2076456931 @default.
- W2076456931 citedByCount "2" @default.
- W2076456931 crossrefType "journal-article" @default.
- W2076456931 hasAuthorship W2076456931A5066619851 @default.
- W2076456931 hasBestOaLocation W20764569311 @default.
- W2076456931 hasConcept C105795698 @default.
- W2076456931 hasConcept C114614502 @default.
- W2076456931 hasConcept C136197465 @default.
- W2076456931 hasConcept C202444582 @default.
- W2076456931 hasConcept C204575570 @default.
- W2076456931 hasConcept C2777183706 @default.
- W2076456931 hasConcept C33923547 @default.
- W2076456931 hasConcept C54732982 @default.
- W2076456931 hasConcept C68693459 @default.
- W2076456931 hasConceptScore W2076456931C105795698 @default.
- W2076456931 hasConceptScore W2076456931C114614502 @default.
- W2076456931 hasConceptScore W2076456931C136197465 @default.
- W2076456931 hasConceptScore W2076456931C202444582 @default.
- W2076456931 hasConceptScore W2076456931C204575570 @default.
- W2076456931 hasConceptScore W2076456931C2777183706 @default.
- W2076456931 hasConceptScore W2076456931C33923547 @default.
- W2076456931 hasConceptScore W2076456931C54732982 @default.
- W2076456931 hasConceptScore W2076456931C68693459 @default.
- W2076456931 hasIssue "2" @default.
- W2076456931 hasLocation W20764569311 @default.
- W2076456931 hasOpenAccess W2076456931 @default.
- W2076456931 hasPrimaryLocation W20764569311 @default.
- W2076456931 hasRelatedWork W1511740746 @default.
- W2076456931 hasRelatedWork W1970481588 @default.
- W2076456931 hasRelatedWork W2002881497 @default.
- W2076456931 hasRelatedWork W2012004019 @default.
- W2076456931 hasRelatedWork W2014453211 @default.
- W2076456931 hasRelatedWork W2034609978 @default.
- W2076456931 hasRelatedWork W2099225170 @default.
- W2076456931 hasRelatedWork W2125475008 @default.
- W2076456931 hasRelatedWork W2313008578 @default.
- W2076456931 hasRelatedWork W2409442886 @default.
- W2076456931 hasRelatedWork W2577505647 @default.
- W2076456931 hasRelatedWork W2602607957 @default.
- W2076456931 hasRelatedWork W2743713567 @default.
- W2076456931 hasRelatedWork W2950289961 @default.
- W2076456931 hasRelatedWork W2952268513 @default.
- W2076456931 hasRelatedWork W2954030087 @default.
- W2076456931 hasRelatedWork W2963126638 @default.
- W2076456931 hasRelatedWork W2963144161 @default.
- W2076456931 hasRelatedWork W3084493617 @default.
- W2076456931 hasRelatedWork W63527900 @default.
- W2076456931 hasVolume "319" @default.
- W2076456931 isParatext "false" @default.
- W2076456931 isRetracted "false" @default.
- W2076456931 magId "2076456931" @default.
- W2076456931 workType "article" @default.