Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076458415> ?p ?o ?g. }
- W2076458415 endingPage "577" @default.
- W2076458415 startingPage "570" @default.
- W2076458415 abstract "We forecast hourly solar irradiance time series using a novel hybrid model based on SOM (self-organizing maps), SVR (support vector regression) and PSO (particle swarm optimization). In order to solve the noise and stationarity problems in the statistical time series forecasting modelling process, SOM is applied to partition the whole input space into several disjointed regions with different characteristic information on the correlation between the input and the output. Then SVR is used to model each disjointed regions to identify the characteristic correlation. In order to reduce the performance volatility of SVM (support vector machine) with different parameters, PSO is implemented to automatically perform the parameter selection in SVR modelling. This hybrid model has been used to forecast hourly solar irradiance in Colorado, USA and Singapore. The technique is found to outperform traditional forecasting models." @default.
- W2076458415 created "2016-06-24" @default.
- W2076458415 creator A5003011137 @default.
- W2076458415 creator A5030446424 @default.
- W2076458415 creator A5086981569 @default.
- W2076458415 creator A5087848751 @default.
- W2076458415 date "2015-03-01" @default.
- W2076458415 modified "2023-09-27" @default.
- W2076458415 title "A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance" @default.
- W2076458415 cites W1964357740 @default.
- W2076458415 cites W1966080588 @default.
- W2076458415 cites W1966808540 @default.
- W2076458415 cites W1967699880 @default.
- W2076458415 cites W1968373267 @default.
- W2076458415 cites W1976862770 @default.
- W2076458415 cites W1977318470 @default.
- W2076458415 cites W1983455668 @default.
- W2076458415 cites W1988230819 @default.
- W2076458415 cites W1990875890 @default.
- W2076458415 cites W1992462306 @default.
- W2076458415 cites W1998571874 @default.
- W2076458415 cites W2001459659 @default.
- W2076458415 cites W2008407812 @default.
- W2076458415 cites W2015153626 @default.
- W2076458415 cites W2023401081 @default.
- W2076458415 cites W2027304952 @default.
- W2076458415 cites W2031946334 @default.
- W2076458415 cites W2040735756 @default.
- W2076458415 cites W2042511026 @default.
- W2076458415 cites W2045865753 @default.
- W2076458415 cites W2047039932 @default.
- W2076458415 cites W2050379260 @default.
- W2076458415 cites W2058580388 @default.
- W2076458415 cites W2070826863 @default.
- W2076458415 cites W2077910286 @default.
- W2076458415 cites W2077990572 @default.
- W2076458415 cites W2078420029 @default.
- W2076458415 cites W2079810998 @default.
- W2076458415 cites W2083397465 @default.
- W2076458415 cites W2087673640 @default.
- W2076458415 cites W2090287545 @default.
- W2076458415 cites W2145804350 @default.
- W2076458415 cites W2145843133 @default.
- W2076458415 doi "https://doi.org/10.1016/j.energy.2015.01.066" @default.
- W2076458415 hasPublicationYear "2015" @default.
- W2076458415 type Work @default.
- W2076458415 sameAs 2076458415 @default.
- W2076458415 citedByCount "106" @default.
- W2076458415 countsByYear W20764584152015 @default.
- W2076458415 countsByYear W20764584152016 @default.
- W2076458415 countsByYear W20764584152017 @default.
- W2076458415 countsByYear W20764584152018 @default.
- W2076458415 countsByYear W20764584152019 @default.
- W2076458415 countsByYear W20764584152020 @default.
- W2076458415 countsByYear W20764584152021 @default.
- W2076458415 countsByYear W20764584152022 @default.
- W2076458415 countsByYear W20764584152023 @default.
- W2076458415 crossrefType "journal-article" @default.
- W2076458415 hasAuthorship W2076458415A5003011137 @default.
- W2076458415 hasAuthorship W2076458415A5030446424 @default.
- W2076458415 hasAuthorship W2076458415A5086981569 @default.
- W2076458415 hasAuthorship W2076458415A5087848751 @default.
- W2076458415 hasConcept C114614502 @default.
- W2076458415 hasConcept C119857082 @default.
- W2076458415 hasConcept C121332964 @default.
- W2076458415 hasConcept C12267149 @default.
- W2076458415 hasConcept C124101348 @default.
- W2076458415 hasConcept C127313418 @default.
- W2076458415 hasConcept C143724316 @default.
- W2076458415 hasConcept C149782125 @default.
- W2076458415 hasConcept C151406439 @default.
- W2076458415 hasConcept C151730666 @default.
- W2076458415 hasConcept C153294291 @default.
- W2076458415 hasConcept C154945302 @default.
- W2076458415 hasConcept C181335050 @default.
- W2076458415 hasConcept C205649164 @default.
- W2076458415 hasConcept C33923547 @default.
- W2076458415 hasConcept C41008148 @default.
- W2076458415 hasConcept C42812 @default.
- W2076458415 hasConcept C46423501 @default.
- W2076458415 hasConcept C62520636 @default.
- W2076458415 hasConcept C85617194 @default.
- W2076458415 hasConcept C91602232 @default.
- W2076458415 hasConcept C9695528 @default.
- W2076458415 hasConceptScore W2076458415C114614502 @default.
- W2076458415 hasConceptScore W2076458415C119857082 @default.
- W2076458415 hasConceptScore W2076458415C121332964 @default.
- W2076458415 hasConceptScore W2076458415C12267149 @default.
- W2076458415 hasConceptScore W2076458415C124101348 @default.
- W2076458415 hasConceptScore W2076458415C127313418 @default.
- W2076458415 hasConceptScore W2076458415C143724316 @default.
- W2076458415 hasConceptScore W2076458415C149782125 @default.
- W2076458415 hasConceptScore W2076458415C151406439 @default.
- W2076458415 hasConceptScore W2076458415C151730666 @default.
- W2076458415 hasConceptScore W2076458415C153294291 @default.
- W2076458415 hasConceptScore W2076458415C154945302 @default.
- W2076458415 hasConceptScore W2076458415C181335050 @default.
- W2076458415 hasConceptScore W2076458415C205649164 @default.