Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076485554> ?p ?o ?g. }
- W2076485554 endingPage "274" @default.
- W2076485554 startingPage "264" @default.
- W2076485554 abstract "Exposure to high concentrations of fine particulate matter (PM₂.₅) can cause serious health problems because PM₂.₅ contains microscopic solid or liquid droplets that are sufficiently small to be ingested deep into human lungs. Thus, daily prediction of PM₂.₅ levels is notably important for regulatory plans that inform the public and restrict social activities in advance when harmful episodes are foreseen. A hybrid EEMD-GRNN (ensemble empirical mode decomposition-general regression neural network) model based on data preprocessing and analysis is firstly proposed in this paper for one-day-ahead prediction of PM₂.₅ concentrations. The EEMD part is utilized to decompose original PM₂.₅ data into several intrinsic mode functions (IMFs), while the GRNN part is used for the prediction of each IMF. The hybrid EEMD-GRNN model is trained using input variables obtained from principal component regression (PCR) model to remove redundancy. These input variables accurately and succinctly reflect the relationships between PM₂.₅ and both air quality and meteorological data. The model is trained with data from January 1 to November 1, 2013 and is validated with data from November 2 to November 21, 2013 in Xi'an Province, China. The experimental results show that the developed hybrid EEMD-GRNN model outperforms a single GRNN model without EEMD, a multiple linear regression (MLR) model, a PCR model, and a traditional autoregressive integrated moving average (ARIMA) model. The hybrid model with fast and accurate results can be used to develop rapid air quality warning systems." @default.
- W2076485554 created "2016-06-24" @default.
- W2076485554 creator A5011626776 @default.
- W2076485554 creator A5044720245 @default.
- W2076485554 creator A5075952559 @default.
- W2076485554 creator A5091014403 @default.
- W2076485554 date "2014-10-01" @default.
- W2076485554 modified "2023-10-12" @default.
- W2076485554 title "A hybrid model for PM 2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network" @default.
- W2076485554 cites W1974284277 @default.
- W2076485554 cites W1977004810 @default.
- W2076485554 cites W1986241067 @default.
- W2076485554 cites W1991041654 @default.
- W2076485554 cites W1992233912 @default.
- W2076485554 cites W1992581623 @default.
- W2076485554 cites W1995625719 @default.
- W2076485554 cites W1996917229 @default.
- W2076485554 cites W2000006166 @default.
- W2076485554 cites W2000511504 @default.
- W2076485554 cites W2002885635 @default.
- W2076485554 cites W2004731026 @default.
- W2076485554 cites W2011740524 @default.
- W2076485554 cites W2016199013 @default.
- W2076485554 cites W2026343919 @default.
- W2076485554 cites W2028163949 @default.
- W2076485554 cites W2034446988 @default.
- W2076485554 cites W2036607365 @default.
- W2076485554 cites W2037559905 @default.
- W2076485554 cites W2038612336 @default.
- W2076485554 cites W2039740466 @default.
- W2076485554 cites W2041471468 @default.
- W2076485554 cites W2050205059 @default.
- W2076485554 cites W2051987047 @default.
- W2076485554 cites W2052113830 @default.
- W2076485554 cites W2053581743 @default.
- W2076485554 cites W2055763622 @default.
- W2076485554 cites W2056494717 @default.
- W2076485554 cites W2057036781 @default.
- W2076485554 cites W2058272607 @default.
- W2076485554 cites W2059996271 @default.
- W2076485554 cites W2060960380 @default.
- W2076485554 cites W2061232022 @default.
- W2076485554 cites W2067186191 @default.
- W2076485554 cites W2067754509 @default.
- W2076485554 cites W2089202914 @default.
- W2076485554 cites W2092998278 @default.
- W2076485554 cites W2106665847 @default.
- W2076485554 cites W2120390927 @default.
- W2076485554 cites W2126395752 @default.
- W2076485554 cites W2126831543 @default.
- W2076485554 cites W2130189616 @default.
- W2076485554 cites W2140208140 @default.
- W2076485554 cites W2146848957 @default.
- W2076485554 cites W2149723649 @default.
- W2076485554 cites W2153240783 @default.
- W2076485554 cites W2159326981 @default.
- W2076485554 cites W2059018799 @default.
- W2076485554 doi "https://doi.org/10.1016/j.scitotenv.2014.07.051" @default.
- W2076485554 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25089688" @default.
- W2076485554 hasPublicationYear "2014" @default.
- W2076485554 type Work @default.
- W2076485554 sameAs 2076485554 @default.
- W2076485554 citedByCount "251" @default.
- W2076485554 countsByYear W20764855542015 @default.
- W2076485554 countsByYear W20764855542016 @default.
- W2076485554 countsByYear W20764855542017 @default.
- W2076485554 countsByYear W20764855542018 @default.
- W2076485554 countsByYear W20764855542019 @default.
- W2076485554 countsByYear W20764855542020 @default.
- W2076485554 countsByYear W20764855542021 @default.
- W2076485554 countsByYear W20764855542022 @default.
- W2076485554 countsByYear W20764855542023 @default.
- W2076485554 crossrefType "journal-article" @default.
- W2076485554 hasAuthorship W2076485554A5011626776 @default.
- W2076485554 hasAuthorship W2076485554A5044720245 @default.
- W2076485554 hasAuthorship W2076485554A5075952559 @default.
- W2076485554 hasAuthorship W2076485554A5091014403 @default.
- W2076485554 hasConcept C10551718 @default.
- W2076485554 hasConcept C105795698 @default.
- W2076485554 hasConcept C111919701 @default.
- W2076485554 hasConcept C112633086 @default.
- W2076485554 hasConcept C119857082 @default.
- W2076485554 hasConcept C121332964 @default.
- W2076485554 hasConcept C124101348 @default.
- W2076485554 hasConcept C126314574 @default.
- W2076485554 hasConcept C151406439 @default.
- W2076485554 hasConcept C152877465 @default.
- W2076485554 hasConcept C153180895 @default.
- W2076485554 hasConcept C153294291 @default.
- W2076485554 hasConcept C154945302 @default.
- W2076485554 hasConcept C159877910 @default.
- W2076485554 hasConcept C24338571 @default.
- W2076485554 hasConcept C25570617 @default.
- W2076485554 hasConcept C27438332 @default.
- W2076485554 hasConcept C33923547 @default.
- W2076485554 hasConcept C34736171 @default.
- W2076485554 hasConcept C41008148 @default.
- W2076485554 hasConcept C48677424 @default.