Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076532922> ?p ?o ?g. }
- W2076532922 endingPage "36" @default.
- W2076532922 startingPage "28" @default.
- W2076532922 abstract "When attempting to estimate parameters in a dynamical system, it is often beneficial to strategically design experimental trajectories that facilitate the estimation process. This paper presents an optimization algorithm which improves conditioning of estimation problems by modifying the experimental trajectory. An objective function which minimizes the condition number of the Hessian of the least-squares identification method is derived and a least-squares method is used to estimate parameters of the nonlinear system. A software-simulated example demonstrates that an arbitrarily designed trajectory can lead to an ill-conditioned least-squares estimation problem, which in turn leads to slower convergence to the best estimate and, in the presence of experimental uncertainties, may lead to no convergence at all. A physical experiment with a robot-controlled suspended mass also shows improved estimation results in practice in the presence of noise and uncertainty using the optimized trajectory." @default.
- W2076532922 created "2016-06-24" @default.
- W2076532922 creator A5045172246 @default.
- W2076532922 creator A5067725461 @default.
- W2076532922 creator A5068819297 @default.
- W2076532922 date "2015-01-01" @default.
- W2076532922 modified "2023-09-24" @default.
- W2076532922 title "Trajectory Optimization for Well-Conditioned Parameter Estimation" @default.
- W2076532922 cites W1967299145 @default.
- W2076532922 cites W1969811075 @default.
- W2076532922 cites W1986167652 @default.
- W2076532922 cites W1988210542 @default.
- W2076532922 cites W2018911853 @default.
- W2076532922 cites W2021436740 @default.
- W2076532922 cites W2033574792 @default.
- W2076532922 cites W2034648438 @default.
- W2076532922 cites W2058821377 @default.
- W2076532922 cites W2066051929 @default.
- W2076532922 cites W2066233746 @default.
- W2076532922 cites W2078856056 @default.
- W2076532922 cites W2083402998 @default.
- W2076532922 cites W2102154372 @default.
- W2076532922 cites W2120625713 @default.
- W2076532922 cites W2121287102 @default.
- W2076532922 cites W2126475662 @default.
- W2076532922 cites W2135735187 @default.
- W2076532922 cites W2138395440 @default.
- W2076532922 cites W2141537501 @default.
- W2076532922 cites W2151186798 @default.
- W2076532922 cites W2153888114 @default.
- W2076532922 cites W2167485946 @default.
- W2076532922 cites W2169462064 @default.
- W2076532922 doi "https://doi.org/10.1109/tase.2014.2323934" @default.
- W2076532922 hasPublicationYear "2015" @default.
- W2076532922 type Work @default.
- W2076532922 sameAs 2076532922 @default.
- W2076532922 citedByCount "19" @default.
- W2076532922 countsByYear W20765329222014 @default.
- W2076532922 countsByYear W20765329222016 @default.
- W2076532922 countsByYear W20765329222017 @default.
- W2076532922 countsByYear W20765329222018 @default.
- W2076532922 countsByYear W20765329222019 @default.
- W2076532922 countsByYear W20765329222021 @default.
- W2076532922 countsByYear W20765329222022 @default.
- W2076532922 countsByYear W20765329222023 @default.
- W2076532922 crossrefType "journal-article" @default.
- W2076532922 hasAuthorship W2076532922A5045172246 @default.
- W2076532922 hasAuthorship W2076532922A5067725461 @default.
- W2076532922 hasAuthorship W2076532922A5068819297 @default.
- W2076532922 hasConcept C105795698 @default.
- W2076532922 hasConcept C111919701 @default.
- W2076532922 hasConcept C11413529 @default.
- W2076532922 hasConcept C115961682 @default.
- W2076532922 hasConcept C121332964 @default.
- W2076532922 hasConcept C126255220 @default.
- W2076532922 hasConcept C1276947 @default.
- W2076532922 hasConcept C13662910 @default.
- W2076532922 hasConcept C154945302 @default.
- W2076532922 hasConcept C158622935 @default.
- W2076532922 hasConcept C162324750 @default.
- W2076532922 hasConcept C167928553 @default.
- W2076532922 hasConcept C185429906 @default.
- W2076532922 hasConcept C203616005 @default.
- W2076532922 hasConcept C2775924081 @default.
- W2076532922 hasConcept C2777303404 @default.
- W2076532922 hasConcept C28826006 @default.
- W2076532922 hasConcept C33923547 @default.
- W2076532922 hasConcept C41008148 @default.
- W2076532922 hasConcept C45923927 @default.
- W2076532922 hasConcept C47446073 @default.
- W2076532922 hasConcept C50522688 @default.
- W2076532922 hasConcept C62520636 @default.
- W2076532922 hasConcept C98045186 @default.
- W2076532922 hasConcept C9936470 @default.
- W2076532922 hasConcept C99498987 @default.
- W2076532922 hasConceptScore W2076532922C105795698 @default.
- W2076532922 hasConceptScore W2076532922C111919701 @default.
- W2076532922 hasConceptScore W2076532922C11413529 @default.
- W2076532922 hasConceptScore W2076532922C115961682 @default.
- W2076532922 hasConceptScore W2076532922C121332964 @default.
- W2076532922 hasConceptScore W2076532922C126255220 @default.
- W2076532922 hasConceptScore W2076532922C1276947 @default.
- W2076532922 hasConceptScore W2076532922C13662910 @default.
- W2076532922 hasConceptScore W2076532922C154945302 @default.
- W2076532922 hasConceptScore W2076532922C158622935 @default.
- W2076532922 hasConceptScore W2076532922C162324750 @default.
- W2076532922 hasConceptScore W2076532922C167928553 @default.
- W2076532922 hasConceptScore W2076532922C185429906 @default.
- W2076532922 hasConceptScore W2076532922C203616005 @default.
- W2076532922 hasConceptScore W2076532922C2775924081 @default.
- W2076532922 hasConceptScore W2076532922C2777303404 @default.
- W2076532922 hasConceptScore W2076532922C28826006 @default.
- W2076532922 hasConceptScore W2076532922C33923547 @default.
- W2076532922 hasConceptScore W2076532922C41008148 @default.
- W2076532922 hasConceptScore W2076532922C45923927 @default.
- W2076532922 hasConceptScore W2076532922C47446073 @default.
- W2076532922 hasConceptScore W2076532922C50522688 @default.
- W2076532922 hasConceptScore W2076532922C62520636 @default.