Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076551320> ?p ?o ?g. }
- W2076551320 endingPage "23" @default.
- W2076551320 startingPage "1" @default.
- W2076551320 abstract "We show that for every fixed j ≥ i ≥ 1, the k -D ominating S et problem restricted to graphs that do not have K ij (the complete bipartite graph on ( i + j ) vertices, where the two parts have i and j vertices, respectively) as a subgraph is fixed parameter tractable (FPT) and has a polynomial kernel. We describe a polynomial-time algorithm that, given a K i,j -free graph G and a nonnegative integer k , constructs a graph H (the “kernel”) and an integer k ' such that (1) G has a dominating set of size at most k if and only if H has a dominating set of size at most k ', (2) H has O (( j + 1) i + 1 k i 2 ) vertices, and (3) k ' = O (( j + 1) i + 1 k i 2 ). Since d -degenerate graphs do not have K d+1,d+1 as a subgraph, this immediately yields a polynomial kernel on O (( d + 2) d +2 k ( d + 1) 2 ) vertices for the k -D ominating S et problem on d -degenerate graphs, solving an open problem posed by Alon and Gutner [Alon and Gutner 2008; Gutner 2009]. The most general class of graphs for which a polynomial kernel was previously known for k -D ominating S et is the class of K h -topological-minor-free graphs [Gutner 2009]. Graphs of bounded degeneracy are the most general class of graphs for which an FPT algorithm was previously known for this problem. K h -topological-minor-free graphs are K i,j -free for suitable values of i,j (but not vice-versa), and so our results show that k -D ominating S et has both FPT algorithms and polynomial kernels in strictly more general classes of graphs. Using the same techniques, we also obtain an O ( jk i ) vertex-kernel for the k -I ndependent D ominating S et problem on K i,j -free graphs." @default.
- W2076551320 created "2016-06-24" @default.
- W2076551320 creator A5031210702 @default.
- W2076551320 creator A5073311967 @default.
- W2076551320 creator A5079304468 @default.
- W2076551320 date "2012-12-01" @default.
- W2076551320 modified "2023-10-16" @default.
- W2076551320 title "Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond" @default.
- W2076551320 cites W1499709881 @default.
- W2076551320 cites W1524652898 @default.
- W2076551320 cites W1544829330 @default.
- W2076551320 cites W1550062525 @default.
- W2076551320 cites W1605439966 @default.
- W2076551320 cites W1971799322 @default.
- W2076551320 cites W1977374427 @default.
- W2076551320 cites W2030711914 @default.
- W2076551320 cites W2058258808 @default.
- W2076551320 cites W2063493837 @default.
- W2076551320 cites W2079313211 @default.
- W2076551320 cites W2079444475 @default.
- W2076551320 cites W2083748805 @default.
- W2076551320 cites W2093762675 @default.
- W2076551320 cites W2107284348 @default.
- W2076551320 cites W2109410667 @default.
- W2076551320 cites W2109542562 @default.
- W2076551320 cites W2136829801 @default.
- W2076551320 cites W2158584754 @default.
- W2076551320 cites W2277497915 @default.
- W2076551320 cites W4292230561 @default.
- W2076551320 doi "https://doi.org/10.1145/2390176.2390187" @default.
- W2076551320 hasPublicationYear "2012" @default.
- W2076551320 type Work @default.
- W2076551320 sameAs 2076551320 @default.
- W2076551320 citedByCount "63" @default.
- W2076551320 countsByYear W20765513202013 @default.
- W2076551320 countsByYear W20765513202014 @default.
- W2076551320 countsByYear W20765513202015 @default.
- W2076551320 countsByYear W20765513202016 @default.
- W2076551320 countsByYear W20765513202017 @default.
- W2076551320 countsByYear W20765513202018 @default.
- W2076551320 countsByYear W20765513202019 @default.
- W2076551320 countsByYear W20765513202020 @default.
- W2076551320 countsByYear W20765513202021 @default.
- W2076551320 countsByYear W20765513202022 @default.
- W2076551320 countsByYear W20765513202023 @default.
- W2076551320 crossrefType "journal-article" @default.
- W2076551320 hasAuthorship W2076551320A5031210702 @default.
- W2076551320 hasAuthorship W2076551320A5073311967 @default.
- W2076551320 hasAuthorship W2076551320A5079304468 @default.
- W2076551320 hasBestOaLocation W20765513202 @default.
- W2076551320 hasConcept C102192266 @default.
- W2076551320 hasConcept C114614502 @default.
- W2076551320 hasConcept C118615104 @default.
- W2076551320 hasConcept C122818955 @default.
- W2076551320 hasConcept C132525143 @default.
- W2076551320 hasConcept C134306372 @default.
- W2076551320 hasConcept C146661039 @default.
- W2076551320 hasConcept C160446614 @default.
- W2076551320 hasConcept C197657726 @default.
- W2076551320 hasConcept C2777727622 @default.
- W2076551320 hasConcept C2778012994 @default.
- W2076551320 hasConcept C33923547 @default.
- W2076551320 hasConcept C34388435 @default.
- W2076551320 hasConcept C60644358 @default.
- W2076551320 hasConcept C74133993 @default.
- W2076551320 hasConcept C80899671 @default.
- W2076551320 hasConcept C86803240 @default.
- W2076551320 hasConceptScore W2076551320C102192266 @default.
- W2076551320 hasConceptScore W2076551320C114614502 @default.
- W2076551320 hasConceptScore W2076551320C118615104 @default.
- W2076551320 hasConceptScore W2076551320C122818955 @default.
- W2076551320 hasConceptScore W2076551320C132525143 @default.
- W2076551320 hasConceptScore W2076551320C134306372 @default.
- W2076551320 hasConceptScore W2076551320C146661039 @default.
- W2076551320 hasConceptScore W2076551320C160446614 @default.
- W2076551320 hasConceptScore W2076551320C197657726 @default.
- W2076551320 hasConceptScore W2076551320C2777727622 @default.
- W2076551320 hasConceptScore W2076551320C2778012994 @default.
- W2076551320 hasConceptScore W2076551320C33923547 @default.
- W2076551320 hasConceptScore W2076551320C34388435 @default.
- W2076551320 hasConceptScore W2076551320C60644358 @default.
- W2076551320 hasConceptScore W2076551320C74133993 @default.
- W2076551320 hasConceptScore W2076551320C80899671 @default.
- W2076551320 hasConceptScore W2076551320C86803240 @default.
- W2076551320 hasIssue "1" @default.
- W2076551320 hasLocation W20765513201 @default.
- W2076551320 hasLocation W20765513202 @default.
- W2076551320 hasOpenAccess W2076551320 @default.
- W2076551320 hasPrimaryLocation W20765513201 @default.
- W2076551320 hasRelatedWork W1977973532 @default.
- W2076551320 hasRelatedWork W1994963913 @default.
- W2076551320 hasRelatedWork W2076551320 @default.
- W2076551320 hasRelatedWork W2091196599 @default.
- W2076551320 hasRelatedWork W2139428469 @default.
- W2076551320 hasRelatedWork W2897850773 @default.
- W2076551320 hasRelatedWork W2949695375 @default.
- W2076551320 hasRelatedWork W2952271241 @default.
- W2076551320 hasRelatedWork W4200630549 @default.