Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076555263> ?p ?o ?g. }
- W2076555263 abstract "Evidence has shown a strong association between ambient particulate matter and adverse health problems. In urban areas, most of households are located near arterial roads, which are exposure to fine particulate matter directly. Hence, it is critical to understand the near-road fine particulate matter concentration and distribution for the purpose of health risk analysis. This paper applies artificial neural network to estimate the near-road fine particulate matter concentration. Factors influencing the detected concentration are classified into four categories: traffic-related, weather-related, detection location-related and background-related. The estimated values are compared with concentrations detected by monitoring campaigns in Gainesville, FL and Shanghai, China. Distinguished from previous research, this study illustrates the fine particulate matter dispersion and distribution within 50 m near road with portable fine particulate matter detectors and weather instruments. The results indicate that artificial neural network approach is capable of producing accurate estimation of pollutant dispersion near road. Besides, fine particulate matter concentration decayed about a half at 30 m distance from an arterial road in Gainesville, FL. Background contributes to more than 2/3 of the detected value at roadside in Shanghai, and the distance–decay pattern is not as obvious as that in Gainesville, which is different from previous studies reported in the literature. An artificial neural network model performs better after removing the background concentration and with higher concentration value of fine particulate matter." @default.
- W2076555263 created "2016-06-24" @default.
- W2076555263 creator A5013274370 @default.
- W2076555263 creator A5069439577 @default.
- W2076555263 date "2014-04-29" @default.
- W2076555263 modified "2023-09-24" @default.
- W2076555263 title "Near-road fine particulate matter concentration estimation using artificial neural network approach" @default.
- W2076555263 cites W1937652852 @default.
- W2076555263 cites W1966148926 @default.
- W2076555263 cites W1967444754 @default.
- W2076555263 cites W1977177161 @default.
- W2076555263 cites W1994680061 @default.
- W2076555263 cites W1997811291 @default.
- W2076555263 cites W2004589466 @default.
- W2076555263 cites W2016199013 @default.
- W2076555263 cites W2017272318 @default.
- W2076555263 cites W2022237285 @default.
- W2076555263 cites W2027332217 @default.
- W2076555263 cites W2040425104 @default.
- W2076555263 cites W2062011138 @default.
- W2076555263 cites W2062563485 @default.
- W2076555263 cites W2075027296 @default.
- W2076555263 cites W2075761009 @default.
- W2076555263 cites W2078597027 @default.
- W2076555263 cites W2081775589 @default.
- W2076555263 cites W2083132829 @default.
- W2076555263 cites W2099040894 @default.
- W2076555263 cites W2099618653 @default.
- W2076555263 cites W2130231837 @default.
- W2076555263 cites W2137983211 @default.
- W2076555263 cites W2152323124 @default.
- W2076555263 cites W4300402905 @default.
- W2076555263 doi "https://doi.org/10.1007/s13762-014-0565-4" @default.
- W2076555263 hasPublicationYear "2014" @default.
- W2076555263 type Work @default.
- W2076555263 sameAs 2076555263 @default.
- W2076555263 citedByCount "7" @default.
- W2076555263 countsByYear W20765552632015 @default.
- W2076555263 countsByYear W20765552632016 @default.
- W2076555263 countsByYear W20765552632018 @default.
- W2076555263 countsByYear W20765552632019 @default.
- W2076555263 countsByYear W20765552632020 @default.
- W2076555263 crossrefType "journal-article" @default.
- W2076555263 hasAuthorship W2076555263A5013274370 @default.
- W2076555263 hasAuthorship W2076555263A5069439577 @default.
- W2076555263 hasBestOaLocation W20765552632 @default.
- W2076555263 hasConcept C107872376 @default.
- W2076555263 hasConcept C120665830 @default.
- W2076555263 hasConcept C121332964 @default.
- W2076555263 hasConcept C153294291 @default.
- W2076555263 hasConcept C154945302 @default.
- W2076555263 hasConcept C177562468 @default.
- W2076555263 hasConcept C178790620 @default.
- W2076555263 hasConcept C185592680 @default.
- W2076555263 hasConcept C205649164 @default.
- W2076555263 hasConcept C24245907 @default.
- W2076555263 hasConcept C39432304 @default.
- W2076555263 hasConcept C41008148 @default.
- W2076555263 hasConcept C50644808 @default.
- W2076555263 hasConcept C82685317 @default.
- W2076555263 hasConcept C87717796 @default.
- W2076555263 hasConceptScore W2076555263C107872376 @default.
- W2076555263 hasConceptScore W2076555263C120665830 @default.
- W2076555263 hasConceptScore W2076555263C121332964 @default.
- W2076555263 hasConceptScore W2076555263C153294291 @default.
- W2076555263 hasConceptScore W2076555263C154945302 @default.
- W2076555263 hasConceptScore W2076555263C177562468 @default.
- W2076555263 hasConceptScore W2076555263C178790620 @default.
- W2076555263 hasConceptScore W2076555263C185592680 @default.
- W2076555263 hasConceptScore W2076555263C205649164 @default.
- W2076555263 hasConceptScore W2076555263C24245907 @default.
- W2076555263 hasConceptScore W2076555263C39432304 @default.
- W2076555263 hasConceptScore W2076555263C41008148 @default.
- W2076555263 hasConceptScore W2076555263C50644808 @default.
- W2076555263 hasConceptScore W2076555263C82685317 @default.
- W2076555263 hasConceptScore W2076555263C87717796 @default.
- W2076555263 hasLocation W20765552631 @default.
- W2076555263 hasLocation W20765552632 @default.
- W2076555263 hasOpenAccess W2076555263 @default.
- W2076555263 hasPrimaryLocation W20765552631 @default.
- W2076555263 hasRelatedWork W151560611 @default.
- W2076555263 hasRelatedWork W161787329 @default.
- W2076555263 hasRelatedWork W1986612865 @default.
- W2076555263 hasRelatedWork W2036549215 @default.
- W2076555263 hasRelatedWork W2053565481 @default.
- W2076555263 hasRelatedWork W2098480600 @default.
- W2076555263 hasRelatedWork W2206267361 @default.
- W2076555263 hasRelatedWork W2292446321 @default.
- W2076555263 hasRelatedWork W2378786570 @default.
- W2076555263 hasRelatedWork W2539031494 @default.
- W2076555263 hasRelatedWork W2548795365 @default.
- W2076555263 hasRelatedWork W2567369931 @default.
- W2076555263 hasRelatedWork W276496305 @default.
- W2076555263 hasRelatedWork W2790714737 @default.
- W2076555263 hasRelatedWork W2928344236 @default.
- W2076555263 hasRelatedWork W2947889718 @default.
- W2076555263 hasRelatedWork W3141727428 @default.
- W2076555263 hasRelatedWork W3176339092 @default.
- W2076555263 hasRelatedWork W3202227671 @default.
- W2076555263 hasRelatedWork W2959751325 @default.