Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076558009> ?p ?o ?g. }
- W2076558009 endingPage "3585" @default.
- W2076558009 startingPage "3562" @default.
- W2076558009 abstract "Apollo 14 regolith breccia 14076, long known to be uniquely endowed with high-alumina, silica-poor (HASP) material of evaporation-residue origin, has been found to contain a diverse suite of complementary condensates, dubbed GASP (gas-associated spheroidal precipitates). GASP occurs in two forms: as glassy or extremely fine grained quenched-melt spheroids, mostly less than 5 μm across; and as quenched textured clasts up to 200 μm across. In two of the clasts, origin by aggregation of spheroidal GASP is confirmed by the presence of relict spheroids. GASP is distinctively depleted in the same refractory major oxides that are characteristically enriched in HASP: Al2O3 and CaO. Among the larger GASP spheroids, Al2O3 is seldom >1 wt%; among the clasts, excluding two instances of apparent contamination by Na- and K-rich substrate-derived melt, bulk Al2O3 averages 0.3 wt%. Depletion of Al2O3 and CaO is also manifested by pyroxene compositions in some clasts; e.g., in the largest clast, En82Wo0.45 with 0.07 wt% Al2O3. Although GASP bulk compositions are nearly pure SiO2 + MgO + FeO, they are nonetheless highly diverse. Spheroid compositions range in mg from 7 to 84 mol%, and in FeO/SiO2 (weight ratio) from 0.002 to 0.67. Bulk compositions and textures of many GASP spheroids suggest that liquid immiscibility occurred prior to quenching; implying that these materials were, some time after condensation, at temperatures of ∼1680 °C. Textural evidence for immiscibility includes lobate boundaries between silicic and mafic domains, and a general tendency for quenched mafic silicates to be concentrated into a few limited patches rather than evenly dispersed. The parent melt of the largest clast’s pyroxene is inferred to have formed as a partial melt within the parent aggregation of GASP matter, compositionally near the pyroxene + cristobalite + melt eutectic and thus at ∼1500 °C. A few GASP spheroids show possible signs of in-flight collision-coalescence, but aggregation of the much larger clasts probably took place in mushy puddles on the lunar surface. Little mixing took place between these GASP puddles and the related HASP, probably because GASP condensation did not commence until after an intermediate stage during which, while neither net evaporation nor net condensation took place, expansion of the vapor cloud carried the eventual GASP matter well apart from the HASP. Considering the characteristic length-scale of lunar regolith mixing, the concentration of both GASP and HASP into this single unique regolith sample (14076) is most consistent with a parent crater size (diameter) of 10–100 km. I speculate that the 14076 regolith may have been unusually situated, almost directly uprange from an unusually oblique large impact. Mercurian analogs of the 14076 impact condensates may have significant implications for remote sensing." @default.
- W2076558009 created "2016-06-24" @default.
- W2076558009 creator A5038481114 @default.
- W2076558009 date "2008-07-01" @default.
- W2076558009 modified "2023-09-25" @default.
- W2076558009 title "Lunar rock-rain: Diverse silicate impact-vapor condensates in an Apollo-14 regolith breccia" @default.
- W2076558009 cites W1947535199 @default.
- W2076558009 cites W1967349249 @default.
- W2076558009 cites W1975519699 @default.
- W2076558009 cites W1976354196 @default.
- W2076558009 cites W1981318599 @default.
- W2076558009 cites W1983618080 @default.
- W2076558009 cites W1984296994 @default.
- W2076558009 cites W1987508219 @default.
- W2076558009 cites W1988353841 @default.
- W2076558009 cites W1988401769 @default.
- W2076558009 cites W1997782776 @default.
- W2076558009 cites W2006536935 @default.
- W2076558009 cites W2006728351 @default.
- W2076558009 cites W2009941549 @default.
- W2076558009 cites W2015560619 @default.
- W2076558009 cites W2016162586 @default.
- W2076558009 cites W2017548289 @default.
- W2076558009 cites W2019521934 @default.
- W2076558009 cites W2020051329 @default.
- W2076558009 cites W2020140193 @default.
- W2076558009 cites W2020659719 @default.
- W2076558009 cites W2025078893 @default.
- W2076558009 cites W2030952883 @default.
- W2076558009 cites W2036643521 @default.
- W2076558009 cites W2039374311 @default.
- W2076558009 cites W2044320524 @default.
- W2076558009 cites W2046354975 @default.
- W2076558009 cites W2046757911 @default.
- W2076558009 cites W2051291938 @default.
- W2076558009 cites W2054723810 @default.
- W2076558009 cites W2055734509 @default.
- W2076558009 cites W2059350524 @default.
- W2076558009 cites W2062790251 @default.
- W2076558009 cites W2066875866 @default.
- W2076558009 cites W2074030880 @default.
- W2076558009 cites W2075769430 @default.
- W2076558009 cites W2077714491 @default.
- W2076558009 cites W2082080903 @default.
- W2076558009 cites W2088671494 @default.
- W2076558009 cites W2089601657 @default.
- W2076558009 cites W2089906558 @default.
- W2076558009 cites W2089989838 @default.
- W2076558009 cites W2091031119 @default.
- W2076558009 cites W2095636137 @default.
- W2076558009 cites W2098274669 @default.
- W2076558009 cites W2110619496 @default.
- W2076558009 cites W2119117896 @default.
- W2076558009 cites W2119845238 @default.
- W2076558009 cites W2120640969 @default.
- W2076558009 cites W2128319198 @default.
- W2076558009 cites W2128642779 @default.
- W2076558009 cites W2149802796 @default.
- W2076558009 cites W2160174955 @default.
- W2076558009 cites W2162931498 @default.
- W2076558009 cites W2168822156 @default.
- W2076558009 cites W2185843388 @default.
- W2076558009 cites W2187465756 @default.
- W2076558009 cites W2503744969 @default.
- W2076558009 cites W4252691592 @default.
- W2076558009 doi "https://doi.org/10.1016/j.gca.2008.04.031" @default.
- W2076558009 hasPublicationYear "2008" @default.
- W2076558009 type Work @default.
- W2076558009 sameAs 2076558009 @default.
- W2076558009 citedByCount "37" @default.
- W2076558009 countsByYear W20765580092012 @default.
- W2076558009 countsByYear W20765580092014 @default.
- W2076558009 countsByYear W20765580092015 @default.
- W2076558009 countsByYear W20765580092016 @default.
- W2076558009 countsByYear W20765580092018 @default.
- W2076558009 countsByYear W20765580092019 @default.
- W2076558009 countsByYear W20765580092020 @default.
- W2076558009 countsByYear W20765580092021 @default.
- W2076558009 countsByYear W20765580092022 @default.
- W2076558009 crossrefType "journal-article" @default.
- W2076558009 hasAuthorship W2076558009A5038481114 @default.
- W2076558009 hasConcept C104962623 @default.
- W2076558009 hasConcept C116862484 @default.
- W2076558009 hasConcept C121332964 @default.
- W2076558009 hasConcept C127313418 @default.
- W2076558009 hasConcept C130635790 @default.
- W2076558009 hasConcept C138170599 @default.
- W2076558009 hasConcept C161509811 @default.
- W2076558009 hasConcept C167284885 @default.
- W2076558009 hasConcept C17409809 @default.
- W2076558009 hasConcept C178790620 @default.
- W2076558009 hasConcept C185592680 @default.
- W2076558009 hasConcept C199289684 @default.
- W2076558009 hasConcept C2777335606 @default.
- W2076558009 hasConcept C2778998827 @default.
- W2076558009 hasConcept C2779517257 @default.
- W2076558009 hasConcept C2780364934 @default.
- W2076558009 hasConcept C41642174 @default.