Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076562472> ?p ?o ?g. }
- W2076562472 endingPage "222" @default.
- W2076562472 startingPage "215" @default.
- W2076562472 abstract "Cross section geometry of stable alluvial channels usually is estimated by simple inaccurate empirical equations, because of the complexity of the phenomena and unknown physical processes of regime channels. So, the main purpose of this study is to evaluate the potential of simulating regime channel treatments using artificial neural networks (ANNs). The process of training and testing of this new model is done using a set of available published filed data (371 data numbers). Several statistical and graphical criterions are used to check the accuracy of the model in comparison with previous empirical equations. The multilayer perceptron (MLP) artificial neural network was used to construct the simulation model based on the training data using back-propagation algorithm. The results show a considerably better performance of the ANN model over the available empirical or rational equations. The constructed ANN models can almost perfectly simulate the width, depth and slope of alluvial regime channels, which clearly describes the dominant geometrical parameters of alluvial rivers. The results demonstrate that the ANN can precisely simulate the regime channel geometry, while the empirical, regression or rational equations can’t do this. The presented methodology in this paper is a new approach in establishing alluvial regime channel relations and predicting cross section geometry of alluvial rivers also it can be used to design stable irrigation and water conveyance channels." @default.
- W2076562472 created "2016-06-24" @default.
- W2076562472 creator A5010548942 @default.
- W2076562472 creator A5048179227 @default.
- W2076562472 creator A5060463419 @default.
- W2076562472 date "2011-01-01" @default.
- W2076562472 modified "2023-10-16" @default.
- W2076562472 title "Developing an expert system for predicting alluvial channel geometry using ANN" @default.
- W2076562472 cites W1498436455 @default.
- W2076562472 cites W1651630223 @default.
- W2076562472 cites W1668783017 @default.
- W2076562472 cites W1969349343 @default.
- W2076562472 cites W1971285467 @default.
- W2076562472 cites W1978315128 @default.
- W2076562472 cites W1980597395 @default.
- W2076562472 cites W1980767780 @default.
- W2076562472 cites W1983815178 @default.
- W2076562472 cites W1987272767 @default.
- W2076562472 cites W1992453431 @default.
- W2076562472 cites W1995341919 @default.
- W2076562472 cites W1998200776 @default.
- W2076562472 cites W1998984369 @default.
- W2076562472 cites W2003224413 @default.
- W2076562472 cites W2006078208 @default.
- W2076562472 cites W2006747694 @default.
- W2076562472 cites W2008819360 @default.
- W2076562472 cites W2014377760 @default.
- W2076562472 cites W2021299669 @default.
- W2076562472 cites W2026004607 @default.
- W2076562472 cites W2029884604 @default.
- W2076562472 cites W2032226859 @default.
- W2076562472 cites W2034448506 @default.
- W2076562472 cites W2040778437 @default.
- W2076562472 cites W2043832063 @default.
- W2076562472 cites W2053528247 @default.
- W2076562472 cites W2056202281 @default.
- W2076562472 cites W2058952413 @default.
- W2076562472 cites W2063756720 @default.
- W2076562472 cites W2065832530 @default.
- W2076562472 cites W2069002482 @default.
- W2076562472 cites W2069279556 @default.
- W2076562472 cites W2076110561 @default.
- W2076562472 cites W2091120270 @default.
- W2076562472 cites W2108218152 @default.
- W2076562472 cites W2108828594 @default.
- W2076562472 cites W2110082863 @default.
- W2076562472 cites W2113001122 @default.
- W2076562472 cites W2115837867 @default.
- W2076562472 cites W2122602414 @default.
- W2076562472 cites W2128084896 @default.
- W2076562472 cites W2130426385 @default.
- W2076562472 cites W2136828505 @default.
- W2076562472 cites W2141614390 @default.
- W2076562472 cites W2149723649 @default.
- W2076562472 cites W2156137902 @default.
- W2076562472 cites W2161378024 @default.
- W2076562472 cites W2162042287 @default.
- W2076562472 cites W2166405413 @default.
- W2076562472 cites W2170100419 @default.
- W2076562472 cites W2171309138 @default.
- W2076562472 cites W2286727209 @default.
- W2076562472 cites W2799842155 @default.
- W2076562472 cites W3017323153 @default.
- W2076562472 cites W3018770027 @default.
- W2076562472 doi "https://doi.org/10.1016/j.eswa.2010.06.047" @default.
- W2076562472 hasPublicationYear "2011" @default.
- W2076562472 type Work @default.
- W2076562472 sameAs 2076562472 @default.
- W2076562472 citedByCount "37" @default.
- W2076562472 countsByYear W20765624722012 @default.
- W2076562472 countsByYear W20765624722013 @default.
- W2076562472 countsByYear W20765624722014 @default.
- W2076562472 countsByYear W20765624722015 @default.
- W2076562472 countsByYear W20765624722016 @default.
- W2076562472 countsByYear W20765624722017 @default.
- W2076562472 countsByYear W20765624722018 @default.
- W2076562472 countsByYear W20765624722019 @default.
- W2076562472 countsByYear W20765624722020 @default.
- W2076562472 countsByYear W20765624722021 @default.
- W2076562472 countsByYear W20765624722022 @default.
- W2076562472 countsByYear W20765624722023 @default.
- W2076562472 crossrefType "journal-article" @default.
- W2076562472 hasAuthorship W2076562472A5010548942 @default.
- W2076562472 hasAuthorship W2076562472A5048179227 @default.
- W2076562472 hasAuthorship W2076562472A5060463419 @default.
- W2076562472 hasConcept C111919701 @default.
- W2076562472 hasConcept C11413529 @default.
- W2076562472 hasConcept C114793014 @default.
- W2076562472 hasConcept C119857082 @default.
- W2076562472 hasConcept C127162648 @default.
- W2076562472 hasConcept C127313418 @default.
- W2076562472 hasConcept C133199616 @default.
- W2076562472 hasConcept C2524010 @default.
- W2076562472 hasConcept C31258907 @default.
- W2076562472 hasConcept C33923547 @default.
- W2076562472 hasConcept C41008148 @default.
- W2076562472 hasConcept C44154836 @default.
- W2076562472 hasConcept C50644808 @default.