Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076580975> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2076580975 endingPage "273" @default.
- W2076580975 startingPage "261" @default.
- W2076580975 abstract "Physiological flow data are common in various medical fields. Examples include urinary, blood and expiratory flows. They are widely used in assessing functions in the urinary, circulatory, or pulmonary systems, respectively. Current statistical methods for analysing these flow data in clinical trials are either univariate analyses, which do not utilize all the information together, or some conventional multivariate methods (such as regression analyses) which yield results that do not render clear medical interpretations. This paper presents a new approach to analysing the flow data, using urinary flow as the primary focus. The basic idea and technical steps are applicable to other flow data as well. The proposed method aims to transform the flow measurements back to the shape of the flow graphs. Since the whole geometric pattern of the flow graph provides more information about the patient's flow condition than any individual flow parameter alone, the method is a meaningful way of combining and analysing the flow data in both statistical and clinical senses. The method is a three-stage procedure. Patients are classified into three classes in the first stage and then ranked in sequence in the second stage, according to the geometry of the shape pattern and some clinical criteria. The classification procedure is shown to be very reliable when compared with the clinician's visual evaluation, and hence can be implemented by computer programming to aid clinical trials involving many patients. The whole ranking score is then readily analysed at the third stage for comparing treatment effects by the analysis of covariance method based on ranks, with the post-treatment score as the response variable and the baseline score as the covariate. An example of a urinary flow data set is provided to illustrate the use of the procedure." @default.
- W2076580975 created "2016-06-24" @default.
- W2076580975 creator A5090448050 @default.
- W2076580975 date "1994-02-15" @default.
- W2076580975 modified "2023-09-25" @default.
- W2076580975 title "A geometric approach to the analysis of physiological flow data" @default.
- W2076580975 cites W107210901 @default.
- W2076580975 cites W111749284 @default.
- W2076580975 cites W1247179837 @default.
- W2076580975 cites W1975150482 @default.
- W2076580975 cites W2026238971 @default.
- W2076580975 cites W2028067695 @default.
- W2076580975 cites W2038364430 @default.
- W2076580975 cites W2042891153 @default.
- W2076580975 cites W2082224249 @default.
- W2076580975 cites W2093241997 @default.
- W2076580975 cites W2124406959 @default.
- W2076580975 cites W2400059258 @default.
- W2076580975 cites W2423279459 @default.
- W2076580975 cites W4245979874 @default.
- W2076580975 cites W4247427452 @default.
- W2076580975 cites W4250518946 @default.
- W2076580975 cites W4366732969 @default.
- W2076580975 doi "https://doi.org/10.1002/sim.4780130308" @default.
- W2076580975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7515509" @default.
- W2076580975 hasPublicationYear "1994" @default.
- W2076580975 type Work @default.
- W2076580975 sameAs 2076580975 @default.
- W2076580975 citedByCount "1" @default.
- W2076580975 countsByYear W20765809752018 @default.
- W2076580975 crossrefType "journal-article" @default.
- W2076580975 hasAuthorship W2076580975A5090448050 @default.
- W2076580975 hasConcept C105795698 @default.
- W2076580975 hasConcept C119857082 @default.
- W2076580975 hasConcept C124101348 @default.
- W2076580975 hasConcept C154945302 @default.
- W2076580975 hasConcept C161584116 @default.
- W2076580975 hasConcept C178650346 @default.
- W2076580975 hasConcept C199163554 @default.
- W2076580975 hasConcept C2524010 @default.
- W2076580975 hasConcept C33923547 @default.
- W2076580975 hasConcept C38180746 @default.
- W2076580975 hasConcept C38349280 @default.
- W2076580975 hasConcept C41008148 @default.
- W2076580975 hasConceptScore W2076580975C105795698 @default.
- W2076580975 hasConceptScore W2076580975C119857082 @default.
- W2076580975 hasConceptScore W2076580975C124101348 @default.
- W2076580975 hasConceptScore W2076580975C154945302 @default.
- W2076580975 hasConceptScore W2076580975C161584116 @default.
- W2076580975 hasConceptScore W2076580975C178650346 @default.
- W2076580975 hasConceptScore W2076580975C199163554 @default.
- W2076580975 hasConceptScore W2076580975C2524010 @default.
- W2076580975 hasConceptScore W2076580975C33923547 @default.
- W2076580975 hasConceptScore W2076580975C38180746 @default.
- W2076580975 hasConceptScore W2076580975C38349280 @default.
- W2076580975 hasConceptScore W2076580975C41008148 @default.
- W2076580975 hasIssue "3" @default.
- W2076580975 hasLocation W20765809751 @default.
- W2076580975 hasLocation W20765809752 @default.
- W2076580975 hasOpenAccess W2076580975 @default.
- W2076580975 hasPrimaryLocation W20765809751 @default.
- W2076580975 hasRelatedWork W2053542176 @default.
- W2076580975 hasRelatedWork W2099921618 @default.
- W2076580975 hasRelatedWork W2114467513 @default.
- W2076580975 hasRelatedWork W2119420496 @default.
- W2076580975 hasRelatedWork W2137983966 @default.
- W2076580975 hasRelatedWork W2622157825 @default.
- W2076580975 hasRelatedWork W4220961233 @default.
- W2076580975 hasRelatedWork W4247833859 @default.
- W2076580975 hasRelatedWork W4255876030 @default.
- W2076580975 hasRelatedWork W4255920913 @default.
- W2076580975 hasVolume "13" @default.
- W2076580975 isParatext "false" @default.
- W2076580975 isRetracted "false" @default.
- W2076580975 magId "2076580975" @default.
- W2076580975 workType "article" @default.