Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076596987> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2076596987 endingPage "980" @default.
- W2076596987 startingPage "965" @default.
- W2076596987 abstract "A set of principles and a systematic procedure are presented to establish the exact solutions of very large and complicated physical systems, without solving a large number of simultaneous equations and without finding the inverse of large matrices. The procedure consists of tearing the system apart into several smaller component systems. After establishing and solving the equations of the component systems, the component solutions themselves are interconnected to obtain outright, by a set of transformations, the exact solution of the original system. The only work remaining is the elimination or solution of the comparatively few superfluous constraints appearing at the points of interconnection. The component and resultant solutions may be either exact or approximate and may represent either linear or, with certain precautions, nonlinear physical systems. The component solutions may be expressed in numerical form or in terms of matrices having as their elements real or complex numbers, functions of time, or differential or other operators, etc. Boundary value, characteristic value, and time-varying problems of partial differential equations, as well as problems in ordinary differential equations and algebraic equations may be solved in this manner. The method shown may be extended and generalized so that one can tear apart and afterward reconstruct the solution of extremely large or highly intricate physical systems, often without calculating any inverse matrices at all and always without carrying along unduly large matrices. This extension and generalization of the method is analogous to building skyscrapers by erecting first a steel framework and only afterward filling the gaps between the girders as needed. Those versed in the science of tensorial analysis of interrelated physical systems on the one hand and of large electrical networks on the other, should thereby be able to solve, with the aid of already available digital computers, highly complex physical systems possessing tens of thousands and, in special cases, even hundreds of thousands of variables. The accuracy of machine calculations, of coding and even the correctness of the analytical procedure itself may be simultaneously checked by physical tests at various stages of the computation. The saving in computing time is considerable even in smaller problems; by tearing a physical system into n parts, the usual machine calculations are reduced, in matrix inversion for instance, to a fraction of about 2/n2. The present paper develops in detail the solution of a simple boundary value problem of Poisson's equation. A numerical example of interconnecting the solutions of large electric-power transmission systems appears in reference 3. Many simpler numerical examples are worked out in reference 1." @default.
- W2076596987 created "2016-06-24" @default.
- W2076596987 creator A5087300329 @default.
- W2076596987 date "1953-08-01" @default.
- W2076596987 modified "2023-10-17" @default.
- W2076596987 title "A Set of Principles to Interconnect the Solutions of Physical Systems" @default.
- W2076596987 cites W2010797108 @default.
- W2076596987 cites W2050119397 @default.
- W2076596987 cites W2062476726 @default.
- W2076596987 cites W2070464213 @default.
- W2076596987 cites W2150011849 @default.
- W2076596987 cites W3134516820 @default.
- W2076596987 cites W4249567282 @default.
- W2076596987 cites W621563392 @default.
- W2076596987 doi "https://doi.org/10.1063/1.1721447" @default.
- W2076596987 hasPublicationYear "1953" @default.
- W2076596987 type Work @default.
- W2076596987 sameAs 2076596987 @default.
- W2076596987 citedByCount "121" @default.
- W2076596987 countsByYear W20765969872012 @default.
- W2076596987 countsByYear W20765969872013 @default.
- W2076596987 countsByYear W20765969872014 @default.
- W2076596987 countsByYear W20765969872015 @default.
- W2076596987 countsByYear W20765969872016 @default.
- W2076596987 countsByYear W20765969872017 @default.
- W2076596987 countsByYear W20765969872018 @default.
- W2076596987 countsByYear W20765969872019 @default.
- W2076596987 countsByYear W20765969872020 @default.
- W2076596987 countsByYear W20765969872021 @default.
- W2076596987 countsByYear W20765969872022 @default.
- W2076596987 crossrefType "journal-article" @default.
- W2076596987 hasAuthorship W2076596987A5087300329 @default.
- W2076596987 hasConcept C116672817 @default.
- W2076596987 hasConcept C121332964 @default.
- W2076596987 hasConcept C134306372 @default.
- W2076596987 hasConcept C158622935 @default.
- W2076596987 hasConcept C168167062 @default.
- W2076596987 hasConcept C177148314 @default.
- W2076596987 hasConcept C177264268 @default.
- W2076596987 hasConcept C182310444 @default.
- W2076596987 hasConcept C199360897 @default.
- W2076596987 hasConcept C207467116 @default.
- W2076596987 hasConcept C23917780 @default.
- W2076596987 hasConcept C2524010 @default.
- W2076596987 hasConcept C28826006 @default.
- W2076596987 hasConcept C33923547 @default.
- W2076596987 hasConcept C41008148 @default.
- W2076596987 hasConcept C51544822 @default.
- W2076596987 hasConcept C62520636 @default.
- W2076596987 hasConcept C78045399 @default.
- W2076596987 hasConcept C93779851 @default.
- W2076596987 hasConcept C94523830 @default.
- W2076596987 hasConcept C97355855 @default.
- W2076596987 hasConceptScore W2076596987C116672817 @default.
- W2076596987 hasConceptScore W2076596987C121332964 @default.
- W2076596987 hasConceptScore W2076596987C134306372 @default.
- W2076596987 hasConceptScore W2076596987C158622935 @default.
- W2076596987 hasConceptScore W2076596987C168167062 @default.
- W2076596987 hasConceptScore W2076596987C177148314 @default.
- W2076596987 hasConceptScore W2076596987C177264268 @default.
- W2076596987 hasConceptScore W2076596987C182310444 @default.
- W2076596987 hasConceptScore W2076596987C199360897 @default.
- W2076596987 hasConceptScore W2076596987C207467116 @default.
- W2076596987 hasConceptScore W2076596987C23917780 @default.
- W2076596987 hasConceptScore W2076596987C2524010 @default.
- W2076596987 hasConceptScore W2076596987C28826006 @default.
- W2076596987 hasConceptScore W2076596987C33923547 @default.
- W2076596987 hasConceptScore W2076596987C41008148 @default.
- W2076596987 hasConceptScore W2076596987C51544822 @default.
- W2076596987 hasConceptScore W2076596987C62520636 @default.
- W2076596987 hasConceptScore W2076596987C78045399 @default.
- W2076596987 hasConceptScore W2076596987C93779851 @default.
- W2076596987 hasConceptScore W2076596987C94523830 @default.
- W2076596987 hasConceptScore W2076596987C97355855 @default.
- W2076596987 hasIssue "8" @default.
- W2076596987 hasLocation W20765969871 @default.
- W2076596987 hasOpenAccess W2076596987 @default.
- W2076596987 hasPrimaryLocation W20765969871 @default.
- W2076596987 hasRelatedWork W1971748573 @default.
- W2076596987 hasRelatedWork W2028013682 @default.
- W2076596987 hasRelatedWork W2088138737 @default.
- W2076596987 hasRelatedWork W2361864162 @default.
- W2076596987 hasRelatedWork W2382456870 @default.
- W2076596987 hasRelatedWork W2383813702 @default.
- W2076596987 hasRelatedWork W2748563398 @default.
- W2076596987 hasRelatedWork W2995990526 @default.
- W2076596987 hasRelatedWork W2999616507 @default.
- W2076596987 hasRelatedWork W3164276969 @default.
- W2076596987 hasVolume "24" @default.
- W2076596987 isParatext "false" @default.
- W2076596987 isRetracted "false" @default.
- W2076596987 magId "2076596987" @default.
- W2076596987 workType "article" @default.