Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076600574> ?p ?o ?g. }
- W2076600574 endingPage "847" @default.
- W2076600574 startingPage "828" @default.
- W2076600574 abstract "Geographic variation has been of interest to both health planners and social epidemiologists. However, while the major focus of interest of planners has been on variation in health care spending, social epidemiologists have focused on health; and while social epidemiologists have observed strong associations between poor health and poverty, planners have concluded that income is not an important determinant of variation in spending. These different conclusions stem, at least in part, from differences in approach. Health planners have generally studied variation among large regions, such as states, counties, or hospital referral regions (HRRs), while epidemiologists have tended to study local areas, such as ZIP codes and census tracts. To better understand the basis for geographic variation in hospital utilization, we drew upon both approaches. Counties and HRRs were disaggregated into their constituent ZIP codes and census tracts and examined the interrelationships between income, disability, and hospital utilization that were examined at both the regional and local levels, using statistical and geomapping tools. Our studies centered on the Milwaukee and Los Angeles HRRs, where per capita health care utilization has been greater than elsewhere in their states. We compared Milwaukee to other HRRs in Wisconsin and Los Angeles to the other populous counties of California and to a region in California of comparable size and diversity, stretching from San Francisco to Sacramento (termed San-Framento). When studied at the ZIP code level, we found steep, curvilinear relationships between lower income and both increased hospital utilization and increasing percentages of individuals reporting disabilities. These associations were also evident on geomaps. They were strongest among populations of working-age adults but weaker among seniors, for whom income proved to be a poor proxy for poverty and whose residential locations deviated from the major underlying income patterns. Among working-age adults, virtually all of the excess utilization in Milwaukee was attributable to very high utilization in Milwaukee's segregated poverty corridor. Similarly, the greater rate of hospital use in Los Angeles than in San-Framento could be explained by proportionately more low-income ZIP codes in Los Angeles and fewer in San-Framento. Indeed, when only high-income ZIP codes were assessed, there was little variation in hospital utilization among California's 18 most populous counties. We estimated that had utilization within each region been at the rate of its high-income ZIP codes, overall utilization would have been 35 % less among working-age adults and 20 % less among seniors. These studies reveal the importance of disaggregating large geographic units into their constituent ZIP codes in order to understand variation in health care utilization among them. They demonstrate the strong association between low ZIP code income and both higher percentages of disability and greater hospital utilization. And they suggest that, given the large contribution of the poorest neighborhoods to aggregate utilization, it will be difficult to curb the growth of health care spending without addressing the underlying social determinants of health." @default.
- W2076600574 created "2016-06-24" @default.
- W2076600574 creator A5007799144 @default.
- W2076600574 creator A5031625711 @default.
- W2076600574 creator A5073171800 @default.
- W2076600574 creator A5089735515 @default.
- W2076600574 creator A5090230661 @default.
- W2076600574 date "2012-05-08" @default.
- W2076600574 modified "2023-10-14" @default.
- W2076600574 title "Poverty, Wealth, and Health Care Utilization: A Geographic Assessment" @default.
- W2076600574 cites W1523359605 @default.
- W2076600574 cites W1530316678 @default.
- W2076600574 cites W1543810067 @default.
- W2076600574 cites W1967817453 @default.
- W2076600574 cites W1968361742 @default.
- W2076600574 cites W1979640865 @default.
- W2076600574 cites W1986016191 @default.
- W2076600574 cites W1986486650 @default.
- W2076600574 cites W2005795561 @default.
- W2076600574 cites W2012985419 @default.
- W2076600574 cites W2017074488 @default.
- W2076600574 cites W2020032248 @default.
- W2076600574 cites W2022583383 @default.
- W2076600574 cites W2027190468 @default.
- W2076600574 cites W2027795935 @default.
- W2076600574 cites W2038961269 @default.
- W2076600574 cites W2054353071 @default.
- W2076600574 cites W2056967146 @default.
- W2076600574 cites W2064789464 @default.
- W2076600574 cites W2072566396 @default.
- W2076600574 cites W2077052657 @default.
- W2076600574 cites W2087627141 @default.
- W2076600574 cites W2095735869 @default.
- W2076600574 cites W2097800881 @default.
- W2076600574 cites W2101857176 @default.
- W2076600574 cites W2101920366 @default.
- W2076600574 cites W2104787874 @default.
- W2076600574 cites W2108614221 @default.
- W2076600574 cites W2113211414 @default.
- W2076600574 cites W2113633798 @default.
- W2076600574 cites W2119976492 @default.
- W2076600574 cites W2120161853 @default.
- W2076600574 cites W2127473698 @default.
- W2076600574 cites W2130019676 @default.
- W2076600574 cites W2135096461 @default.
- W2076600574 cites W2138696311 @default.
- W2076600574 cites W2140352190 @default.
- W2076600574 cites W2140394167 @default.
- W2076600574 cites W2140876138 @default.
- W2076600574 cites W2143006942 @default.
- W2076600574 cites W2151443489 @default.
- W2076600574 cites W2157757373 @default.
- W2076600574 cites W2159834688 @default.
- W2076600574 cites W2162587648 @default.
- W2076600574 cites W2163541261 @default.
- W2076600574 cites W2165368441 @default.
- W2076600574 cites W2318964137 @default.
- W2076600574 cites W285725671 @default.
- W2076600574 cites W3121334793 @default.
- W2076600574 cites W3122672839 @default.
- W2076600574 cites W4300507083 @default.
- W2076600574 doi "https://doi.org/10.1007/s11524-012-9689-3" @default.
- W2076600574 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3462827" @default.
- W2076600574 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22566148" @default.
- W2076600574 hasPublicationYear "2012" @default.
- W2076600574 type Work @default.
- W2076600574 sameAs 2076600574 @default.
- W2076600574 citedByCount "64" @default.
- W2076600574 countsByYear W20766005742012 @default.
- W2076600574 countsByYear W20766005742013 @default.
- W2076600574 countsByYear W20766005742014 @default.
- W2076600574 countsByYear W20766005742015 @default.
- W2076600574 countsByYear W20766005742016 @default.
- W2076600574 countsByYear W20766005742017 @default.
- W2076600574 countsByYear W20766005742018 @default.
- W2076600574 countsByYear W20766005742019 @default.
- W2076600574 countsByYear W20766005742020 @default.
- W2076600574 countsByYear W20766005742021 @default.
- W2076600574 countsByYear W20766005742022 @default.
- W2076600574 countsByYear W20766005742023 @default.
- W2076600574 crossrefType "journal-article" @default.
- W2076600574 hasAuthorship W2076600574A5007799144 @default.
- W2076600574 hasAuthorship W2076600574A5031625711 @default.
- W2076600574 hasAuthorship W2076600574A5073171800 @default.
- W2076600574 hasAuthorship W2076600574A5089735515 @default.
- W2076600574 hasAuthorship W2076600574A5090230661 @default.
- W2076600574 hasBestOaLocation W20766005741 @default.
- W2076600574 hasConcept C127598652 @default.
- W2076600574 hasConcept C144024400 @default.
- W2076600574 hasConcept C149923435 @default.
- W2076600574 hasConcept C160443848 @default.
- W2076600574 hasConcept C160735492 @default.
- W2076600574 hasConcept C162324750 @default.
- W2076600574 hasConcept C189326681 @default.
- W2076600574 hasConcept C205649164 @default.
- W2076600574 hasConcept C2908647359 @default.
- W2076600574 hasConcept C2993083740 @default.
- W2076600574 hasConcept C45355965 @default.