Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076645166> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2076645166 abstract "In recent past, there is an increased interest in multivariate time series (MTS) clustering research due to its wide applications in various areas such as finance, environmental research, multimedia and crime. The traditional similarity measures like correlation, Euclidean distance etc. cannot be applied to measure the similarity among data objects of MTS since every data object of MTS is in the form of a matrix. Although, some similarity measures like dynamic time warping (DTW), and extended Frobenius norm (Eros) have been introduced in the past for finding similarity among MTS data objects, they are either computationally expensive or inefficient for carrying out clustering of MTS datasets. In this paper, an efficient similarity measure has been introduced which outperforms the existing similarity measures. This paper also introduces a two phase methodology for e-governance of crime data with multiple inputs and multiple outputs. The first phase forms homogeneous groups of objects using MTS clustering based on the proposed similarity measure and the second phase measures the performance of homogeneous groups using Malmquist data envelopment analysis (DEA) model. The proposed similarity measure for MTS and two phase methodology can be applied to wide variety of real world problems. The effectiveness of the proposed approach has been illustrated on Indian crime data. Firstly, MTS clustering using proposed similarity measure is used to cluster various police administration units (PAUs) such as states, districts and police stations based on similar crime trends. Secondly, PAUs are ranked on the basis of their effective enforcement of crime prevention measures using Data Envelopment Analysis (DEA)." @default.
- W2076645166 created "2016-06-24" @default.
- W2076645166 creator A5043943508 @default.
- W2076645166 creator A5046755750 @default.
- W2076645166 date "2013-12-01" @default.
- W2076645166 modified "2023-09-25" @default.
- W2076645166 title "Novel Multivariate Time Series Clustering Approach for E-Governance of Crime Data" @default.
- W2076645166 cites W116902681 @default.
- W2076645166 cites W131856359 @default.
- W2076645166 cites W1492662576 @default.
- W2076645166 cites W1523767002 @default.
- W2076645166 cites W1602659231 @default.
- W2076645166 cites W1971806840 @default.
- W2076645166 cites W1998871699 @default.
- W2076645166 cites W2012714569 @default.
- W2076645166 cites W2018546346 @default.
- W2076645166 cites W2022367269 @default.
- W2076645166 cites W2026146887 @default.
- W2076645166 cites W2042221267 @default.
- W2076645166 cites W2043147463 @default.
- W2076645166 cites W2057470070 @default.
- W2076645166 cites W2076452041 @default.
- W2076645166 cites W2087619188 @default.
- W2076645166 cites W2089691864 @default.
- W2076645166 cites W2136812372 @default.
- W2076645166 cites W2155758585 @default.
- W2076645166 cites W2164890035 @default.
- W2076645166 doi "https://doi.org/10.1109/dese.2013.62" @default.
- W2076645166 hasPublicationYear "2013" @default.
- W2076645166 type Work @default.
- W2076645166 sameAs 2076645166 @default.
- W2076645166 citedByCount "2" @default.
- W2076645166 countsByYear W20766451662015 @default.
- W2076645166 countsByYear W20766451662020 @default.
- W2076645166 crossrefType "proceedings-article" @default.
- W2076645166 hasAuthorship W2076645166A5043943508 @default.
- W2076645166 hasAuthorship W2076645166A5046755750 @default.
- W2076645166 hasConcept C103278499 @default.
- W2076645166 hasConcept C105795698 @default.
- W2076645166 hasConcept C115961682 @default.
- W2076645166 hasConcept C119857082 @default.
- W2076645166 hasConcept C120174047 @default.
- W2076645166 hasConcept C124101348 @default.
- W2076645166 hasConcept C151406439 @default.
- W2076645166 hasConcept C154945302 @default.
- W2076645166 hasConcept C22088475 @default.
- W2076645166 hasConcept C2776517306 @default.
- W2076645166 hasConcept C2780009758 @default.
- W2076645166 hasConcept C33923547 @default.
- W2076645166 hasConcept C41008148 @default.
- W2076645166 hasConcept C73555534 @default.
- W2076645166 hasConcept C88516994 @default.
- W2076645166 hasConceptScore W2076645166C103278499 @default.
- W2076645166 hasConceptScore W2076645166C105795698 @default.
- W2076645166 hasConceptScore W2076645166C115961682 @default.
- W2076645166 hasConceptScore W2076645166C119857082 @default.
- W2076645166 hasConceptScore W2076645166C120174047 @default.
- W2076645166 hasConceptScore W2076645166C124101348 @default.
- W2076645166 hasConceptScore W2076645166C151406439 @default.
- W2076645166 hasConceptScore W2076645166C154945302 @default.
- W2076645166 hasConceptScore W2076645166C22088475 @default.
- W2076645166 hasConceptScore W2076645166C2776517306 @default.
- W2076645166 hasConceptScore W2076645166C2780009758 @default.
- W2076645166 hasConceptScore W2076645166C33923547 @default.
- W2076645166 hasConceptScore W2076645166C41008148 @default.
- W2076645166 hasConceptScore W2076645166C73555534 @default.
- W2076645166 hasConceptScore W2076645166C88516994 @default.
- W2076645166 hasLocation W20766451661 @default.
- W2076645166 hasOpenAccess W2076645166 @default.
- W2076645166 hasPrimaryLocation W20766451661 @default.
- W2076645166 hasRelatedWork W1488437289 @default.
- W2076645166 hasRelatedWork W2052451333 @default.
- W2076645166 hasRelatedWork W2187249578 @default.
- W2076645166 hasRelatedWork W2358805260 @default.
- W2076645166 hasRelatedWork W2359638073 @default.
- W2076645166 hasRelatedWork W2569386551 @default.
- W2076645166 hasRelatedWork W2811335600 @default.
- W2076645166 hasRelatedWork W3141827490 @default.
- W2076645166 hasRelatedWork W4285095000 @default.
- W2076645166 hasRelatedWork W2182136398 @default.
- W2076645166 isParatext "false" @default.
- W2076645166 isRetracted "false" @default.
- W2076645166 magId "2076645166" @default.
- W2076645166 workType "article" @default.