Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076670320> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2076670320 endingPage "274" @default.
- W2076670320 startingPage "265" @default.
- W2076670320 abstract "Cement bonded sand moulds can be used to cast ferrous metals with a good dimensional control. To determine input–output relationships in the cement bonded moulding sand system, both forward and reverse mappings were carried out using feed forward neural networks trained with the help of a back propagation algorithm and a genetic algorithm, separately. In the forward mapping, mould properties, namely compression strength and hardness, were predicted for different combinations of process parameters, such as percentages of cement, of accelerator and of water and testing time. In the reverse mapping, the process parameters were determined as the functions of mould properties. A batch mode of training had been provided to the neural networks with the help of one thousand training data generated artificially using the conventional statistical regression equations derived earlier by the authors. The performances of the developed models were compared among themselves and with those of the statistical regression model, for twenty randomly generated test cases. Neural network based approaches had proved their ability to carry out both the mappings. In forward mapping, the results of the neural network based approaches were found to be comparable with those of conventional regression analysis. Moreover, the genetic algorithm trained neural network was seen to perform better than the back propagation trained neural network for both the forward and reverse mappings." @default.
- W2076670320 created "2016-06-24" @default.
- W2076670320 creator A5019481683 @default.
- W2076670320 creator A5066739254 @default.
- W2076670320 creator A5083601273 @default.
- W2076670320 date "2007-10-01" @default.
- W2076670320 modified "2023-09-25" @default.
- W2076670320 title "Modelling of input–output relationships in cement bonded moulding sand system using neural networks" @default.
- W2076670320 cites W1980172621 @default.
- W2076670320 cites W2034185473 @default.
- W2076670320 cites W2071168403 @default.
- W2076670320 cites W2324774615 @default.
- W2076670320 doi "https://doi.org/10.1179/136404607x249446" @default.
- W2076670320 hasPublicationYear "2007" @default.
- W2076670320 type Work @default.
- W2076670320 sameAs 2076670320 @default.
- W2076670320 citedByCount "16" @default.
- W2076670320 countsByYear W20766703202012 @default.
- W2076670320 countsByYear W20766703202014 @default.
- W2076670320 countsByYear W20766703202015 @default.
- W2076670320 countsByYear W20766703202016 @default.
- W2076670320 countsByYear W20766703202017 @default.
- W2076670320 countsByYear W20766703202018 @default.
- W2076670320 countsByYear W20766703202019 @default.
- W2076670320 countsByYear W20766703202020 @default.
- W2076670320 countsByYear W20766703202022 @default.
- W2076670320 crossrefType "journal-article" @default.
- W2076670320 hasAuthorship W2076670320A5019481683 @default.
- W2076670320 hasAuthorship W2076670320A5066739254 @default.
- W2076670320 hasAuthorship W2076670320A5083601273 @default.
- W2076670320 hasConcept C105795698 @default.
- W2076670320 hasConcept C111919701 @default.
- W2076670320 hasConcept C11413529 @default.
- W2076670320 hasConcept C119857082 @default.
- W2076670320 hasConcept C152877465 @default.
- W2076670320 hasConcept C154945302 @default.
- W2076670320 hasConcept C155032097 @default.
- W2076670320 hasConcept C159985019 @default.
- W2076670320 hasConcept C186060115 @default.
- W2076670320 hasConcept C192562407 @default.
- W2076670320 hasConcept C33923547 @default.
- W2076670320 hasConcept C41008148 @default.
- W2076670320 hasConcept C50644808 @default.
- W2076670320 hasConcept C523993062 @default.
- W2076670320 hasConcept C83546350 @default.
- W2076670320 hasConcept C86803240 @default.
- W2076670320 hasConcept C8880873 @default.
- W2076670320 hasConcept C98045186 @default.
- W2076670320 hasConceptScore W2076670320C105795698 @default.
- W2076670320 hasConceptScore W2076670320C111919701 @default.
- W2076670320 hasConceptScore W2076670320C11413529 @default.
- W2076670320 hasConceptScore W2076670320C119857082 @default.
- W2076670320 hasConceptScore W2076670320C152877465 @default.
- W2076670320 hasConceptScore W2076670320C154945302 @default.
- W2076670320 hasConceptScore W2076670320C155032097 @default.
- W2076670320 hasConceptScore W2076670320C159985019 @default.
- W2076670320 hasConceptScore W2076670320C186060115 @default.
- W2076670320 hasConceptScore W2076670320C192562407 @default.
- W2076670320 hasConceptScore W2076670320C33923547 @default.
- W2076670320 hasConceptScore W2076670320C41008148 @default.
- W2076670320 hasConceptScore W2076670320C50644808 @default.
- W2076670320 hasConceptScore W2076670320C523993062 @default.
- W2076670320 hasConceptScore W2076670320C83546350 @default.
- W2076670320 hasConceptScore W2076670320C86803240 @default.
- W2076670320 hasConceptScore W2076670320C8880873 @default.
- W2076670320 hasConceptScore W2076670320C98045186 @default.
- W2076670320 hasIssue "5" @default.
- W2076670320 hasLocation W20766703201 @default.
- W2076670320 hasOpenAccess W2076670320 @default.
- W2076670320 hasPrimaryLocation W20766703201 @default.
- W2076670320 hasRelatedWork W1500372396 @default.
- W2076670320 hasRelatedWork W1540679464 @default.
- W2076670320 hasRelatedWork W2022259620 @default.
- W2076670320 hasRelatedWork W2040019480 @default.
- W2076670320 hasRelatedWork W2166358344 @default.
- W2076670320 hasRelatedWork W2242027171 @default.
- W2076670320 hasRelatedWork W2380598614 @default.
- W2076670320 hasRelatedWork W2435007635 @default.
- W2076670320 hasRelatedWork W2598000333 @default.
- W2076670320 hasRelatedWork W4200544071 @default.
- W2076670320 hasVolume "20" @default.
- W2076670320 isParatext "false" @default.
- W2076670320 isRetracted "false" @default.
- W2076670320 magId "2076670320" @default.
- W2076670320 workType "article" @default.