Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076670772> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2076670772 abstract "The classical Gauss problem of determining all imaginary quadratic number fields of class number one has an analogue involving finite motivic cohomology groups attached to the ring of integers $$o_F$$ in a totally real number field $$F$$ . In the classical situation, the value of the zeta function of $$F$$ at $$0$$ can be written as a quotient of two—not necessarily coprime—integers, where the numerator is equal to the class number. For a totally real field $$F$$ and an even integer $$n ge 2$$ , the value of the zeta-function of $$F$$ at $$1-n$$ can also be written as a quotient of two—not necessarily coprime—integers, where the numerator is equal to the order $$h_n(F)$$ of the motivic cohomology group $$H_mathcal M ^2(o_F,mathbb Z (n))$$ . This order is always divisible by $$2^d$$ , where $$d$$ is the degree of $$F$$ . We determine all totally real fields $$F (ne mathbb{Q })$$ and all even integers $$n ge 2$$ , for which the quotient $$frac{h_n(F)}{2^d}$$ is equal to 1. There are no fields for $$n ge 6$$ , there is only the field $$mathbb{Q }(sqrt{5})$$ for $$n = 4$$ , and there are 11 fields for $$n=2$$ . The motivic cohomology groups $$H_mathcal M ^2(o_F,mathbb Z (n))$$ contain the canonical subgroups $$WK^mathcal M _{2n-2}(F)$$ , called motivic wild kernels, which are analogous to Tate–Shafarevic groups. For even integers $$n ge 4$$ , there is again only the case $$n = 4$$ and the field $$mathbb{Q }(sqrt{5})$$ , for which the motivic wild kernel $$WK^mathcal M _{2n-2}(F)$$ vanishes. However, for $$n=2$$ , among the totally real fields $$F$$ of degrees between $$2$$ and $$9$$ , we found 21 of them, for which $$WK^mathcal M _{2}(F)$$ vanishes, the largest degree being $$5$$ . A basic assumption in our approach is the validity of the $$2$$ -adic Main Conjecture in Iwasawa theory for the trivial character, which so far has only been proven for abelian number fields (by A. Wiles)." @default.
- W2076670772 created "2016-06-24" @default.
- W2076670772 creator A5053324627 @default.
- W2076670772 creator A5079228250 @default.
- W2076670772 date "2013-06-01" @default.
- W2076670772 modified "2023-10-06" @default.
- W2076670772 title "The analogue of the Gauss class number problem in motivic cohomology" @default.
- W2076670772 cites W132752536 @default.
- W2076670772 cites W1493696775 @default.
- W2076670772 cites W1530163290 @default.
- W2076670772 cites W1576679836 @default.
- W2076670772 cites W1599036550 @default.
- W2076670772 cites W1969256763 @default.
- W2076670772 cites W1993474312 @default.
- W2076670772 cites W2008814803 @default.
- W2076670772 cites W2010828369 @default.
- W2076670772 cites W2016460631 @default.
- W2076670772 cites W2026240257 @default.
- W2076670772 cites W2029916622 @default.
- W2076670772 cites W2034229247 @default.
- W2076670772 cites W2053826216 @default.
- W2076670772 cites W2066465099 @default.
- W2076670772 cites W2073454809 @default.
- W2076670772 cites W2073714830 @default.
- W2076670772 cites W2130891823 @default.
- W2076670772 cites W2141650830 @default.
- W2076670772 cites W2152069602 @default.
- W2076670772 cites W2181501465 @default.
- W2076670772 cites W2316423152 @default.
- W2076670772 cites W2330445913 @default.
- W2076670772 cites W2500503333 @default.
- W2076670772 cites W2604330053 @default.
- W2076670772 cites W4252392525 @default.
- W2076670772 cites W4292101538 @default.
- W2076670772 doi "https://doi.org/10.1007/s40316-013-0006-7" @default.
- W2076670772 hasPublicationYear "2013" @default.
- W2076670772 type Work @default.
- W2076670772 sameAs 2076670772 @default.
- W2076670772 citedByCount "2" @default.
- W2076670772 countsByYear W20766707722013 @default.
- W2076670772 countsByYear W20766707722015 @default.
- W2076670772 crossrefType "journal-article" @default.
- W2076670772 hasAuthorship W2076670772A5053324627 @default.
- W2076670772 hasAuthorship W2076670772A5079228250 @default.
- W2076670772 hasBestOaLocation W20766707722 @default.
- W2076670772 hasConcept C118615104 @default.
- W2076670772 hasConcept C121332964 @default.
- W2076670772 hasConcept C136119220 @default.
- W2076670772 hasConcept C154945302 @default.
- W2076670772 hasConcept C161794534 @default.
- W2076670772 hasConcept C202444582 @default.
- W2076670772 hasConcept C2777212361 @default.
- W2076670772 hasConcept C33923547 @default.
- W2076670772 hasConcept C41008148 @default.
- W2076670772 hasConcept C62520636 @default.
- W2076670772 hasConcept C78606066 @default.
- W2076670772 hasConcept C94375191 @default.
- W2076670772 hasConceptScore W2076670772C118615104 @default.
- W2076670772 hasConceptScore W2076670772C121332964 @default.
- W2076670772 hasConceptScore W2076670772C136119220 @default.
- W2076670772 hasConceptScore W2076670772C154945302 @default.
- W2076670772 hasConceptScore W2076670772C161794534 @default.
- W2076670772 hasConceptScore W2076670772C202444582 @default.
- W2076670772 hasConceptScore W2076670772C2777212361 @default.
- W2076670772 hasConceptScore W2076670772C33923547 @default.
- W2076670772 hasConceptScore W2076670772C41008148 @default.
- W2076670772 hasConceptScore W2076670772C62520636 @default.
- W2076670772 hasConceptScore W2076670772C78606066 @default.
- W2076670772 hasConceptScore W2076670772C94375191 @default.
- W2076670772 hasLocation W20766707721 @default.
- W2076670772 hasLocation W20766707722 @default.
- W2076670772 hasOpenAccess W2076670772 @default.
- W2076670772 hasPrimaryLocation W20766707721 @default.
- W2076670772 hasRelatedWork W1494347220 @default.
- W2076670772 hasRelatedWork W157363888 @default.
- W2076670772 hasRelatedWork W1663794977 @default.
- W2076670772 hasRelatedWork W1836922729 @default.
- W2076670772 hasRelatedWork W2005536029 @default.
- W2076670772 hasRelatedWork W2025107438 @default.
- W2076670772 hasRelatedWork W2107623702 @default.
- W2076670772 hasRelatedWork W2135862177 @default.
- W2076670772 hasRelatedWork W2145992703 @default.
- W2076670772 hasRelatedWork W2181657651 @default.
- W2076670772 hasRelatedWork W2484146630 @default.
- W2076670772 hasRelatedWork W2769501679 @default.
- W2076670772 hasRelatedWork W2887026545 @default.
- W2076670772 hasRelatedWork W2890980336 @default.
- W2076670772 hasRelatedWork W2949883290 @default.
- W2076670772 hasRelatedWork W2950020310 @default.
- W2076670772 hasRelatedWork W2963917646 @default.
- W2076670772 hasRelatedWork W3034932184 @default.
- W2076670772 hasRelatedWork W3036594342 @default.
- W2076670772 hasRelatedWork W3118917238 @default.
- W2076670772 isParatext "false" @default.
- W2076670772 isRetracted "false" @default.
- W2076670772 magId "2076670772" @default.
- W2076670772 workType "article" @default.