Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076673025> ?p ?o ?g. }
- W2076673025 endingPage "240" @default.
- W2076673025 startingPage "233" @default.
- W2076673025 abstract "The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant–pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops. The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant–pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops. a gene, the product of which, as defined by Flor's gene-for-gene hypothesis, is recognized by a plant R-gene and activates ETI. a plant PRR that binds the PAMP chitin. a RLK required for CEBiP-triggered PTI. a plant PRR that binds the PAMP EF-Tu. plant defense responses activated following the recognition by the plant of pathogen effectors. a plant PRR that binds the PAMP flg22. systematically screen a genome-wide array of markers against the phenotypes of interest to identify statistical associations between markers and phenotypes. plant defense responses activated following the recognition by the plant of PAMPs. conserved pathogen molecules recognized by the plant; also known as MAMPs. a genetic region that contributes to a phenotype displaying a continuous distribution. a protein containing a receptor-recognition and a functional kinase domain. a fusion protein between the plant gene DNA recognition repeats of the TAL effector protein and the DNA cleavage domains of FoKI, a bacterial type IIS restriction endonuclease. TALEs bind to TALE-specific DNA sequences within the promoter regions of plant genes, activating gene transcription." @default.
- W2076673025 created "2016-06-24" @default.
- W2076673025 creator A5003565080 @default.
- W2076673025 creator A5026390483 @default.
- W2076673025 creator A5048664341 @default.
- W2076673025 creator A5051241678 @default.
- W2076673025 creator A5089484452 @default.
- W2076673025 date "2013-04-01" @default.
- W2076673025 modified "2023-10-04" @default.
- W2076673025 title "Plant–pathogen interactions: disease resistance in modern agriculture" @default.
- W2076673025 cites W126211488 @default.
- W2076673025 cites W1497493092 @default.
- W2076673025 cites W1561534007 @default.
- W2076673025 cites W1826812957 @default.
- W2076673025 cites W1839095954 @default.
- W2076673025 cites W190954123 @default.
- W2076673025 cites W1919928502 @default.
- W2076673025 cites W1969275334 @default.
- W2076673025 cites W1972514587 @default.
- W2076673025 cites W1975497332 @default.
- W2076673025 cites W1977637902 @default.
- W2076673025 cites W1978641393 @default.
- W2076673025 cites W1982252718 @default.
- W2076673025 cites W1985270286 @default.
- W2076673025 cites W1986797041 @default.
- W2076673025 cites W1989915822 @default.
- W2076673025 cites W1990319434 @default.
- W2076673025 cites W1991874938 @default.
- W2076673025 cites W1991990550 @default.
- W2076673025 cites W1992908505 @default.
- W2076673025 cites W1994155714 @default.
- W2076673025 cites W1994481770 @default.
- W2076673025 cites W1998671658 @default.
- W2076673025 cites W1999041156 @default.
- W2076673025 cites W2001965082 @default.
- W2076673025 cites W2003189219 @default.
- W2076673025 cites W2012286847 @default.
- W2076673025 cites W2017205644 @default.
- W2076673025 cites W2017917363 @default.
- W2076673025 cites W2018153460 @default.
- W2076673025 cites W2019518591 @default.
- W2076673025 cites W2023308715 @default.
- W2076673025 cites W2032107685 @default.
- W2076673025 cites W2032736081 @default.
- W2076673025 cites W2035738152 @default.
- W2076673025 cites W2037160676 @default.
- W2076673025 cites W2039316426 @default.
- W2076673025 cites W2042300850 @default.
- W2076673025 cites W2043018384 @default.
- W2076673025 cites W2046067774 @default.
- W2076673025 cites W2050607290 @default.
- W2076673025 cites W2059911736 @default.
- W2076673025 cites W2060071889 @default.
- W2076673025 cites W2064881644 @default.
- W2076673025 cites W2066585408 @default.
- W2076673025 cites W2073145358 @default.
- W2076673025 cites W2077404754 @default.
- W2076673025 cites W2081458526 @default.
- W2076673025 cites W2088016208 @default.
- W2076673025 cites W2091708974 @default.
- W2076673025 cites W2094662908 @default.
- W2076673025 cites W2098238343 @default.
- W2076673025 cites W2099838379 @default.
- W2076673025 cites W2100937617 @default.
- W2076673025 cites W2102370923 @default.
- W2076673025 cites W2103574752 @default.
- W2076673025 cites W2104745202 @default.
- W2076673025 cites W2108116413 @default.
- W2076673025 cites W2111050364 @default.
- W2076673025 cites W2117956345 @default.
- W2076673025 cites W2120287165 @default.
- W2076673025 cites W2120607107 @default.
- W2076673025 cites W2122599023 @default.
- W2076673025 cites W2127432369 @default.
- W2076673025 cites W2128209776 @default.
- W2076673025 cites W2130029642 @default.
- W2076673025 cites W2142150660 @default.
- W2076673025 cites W2143116758 @default.
- W2076673025 cites W2150401481 @default.
- W2076673025 cites W2152636197 @default.
- W2076673025 cites W2154232032 @default.
- W2076673025 cites W2154540205 @default.
- W2076673025 cites W2154554484 @default.
- W2076673025 cites W2160619010 @default.
- W2076673025 cites W2162515800 @default.
- W2076673025 cites W2164671653 @default.
- W2076673025 cites W2166999606 @default.
- W2076673025 cites W2168245648 @default.
- W2076673025 cites W2172027477 @default.
- W2076673025 cites W22308802 @default.
- W2076673025 cites W2314300622 @default.
- W2076673025 doi "https://doi.org/10.1016/j.tig.2012.10.011" @default.
- W2076673025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23153595" @default.
- W2076673025 hasPublicationYear "2013" @default.
- W2076673025 type Work @default.
- W2076673025 sameAs 2076673025 @default.
- W2076673025 citedByCount "227" @default.
- W2076673025 countsByYear W20766730252013 @default.