Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076752446> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2076752446 abstract "The subject matter of this paper is an old one with a rich history, beginning with the work of Gauss and Eisenstein, maturing at the hands of Smith and Minkowski, and culminating in the fundamental results of Siegel. More precisely, if L is a lattice over Z (for simplicity), equipped with an integral quadratic form Q, the celebrated Smith-Minkowski-Siegel mass formula expresses the total mass of (L,Q), which is a weighted class number of the genus of (L,Q), as a product of local factors. These local factors are known as the local densities of (L,Q). Subsequent work of Kneser, Tamagawa and Weil resulted in an elegant formulation of the subject in terms of Tamagawa measures. In particular, the local density at a non-archimedean place p can be expressed as the integral of a certain volume form ωld over AutZp(L,Q), which is an open compact subgroup of AutQp(L,Q). The question that remains is whether one can find an explicit formula for the local density. Through the work of Pall (for p 6= 2) and Watson (for p = 2), such an explicit formula for the local density is in fact known for an arbitrary lattice over Zp (see [P] and [Wa]). The formula is obviously structured, though [CS] seems to be the first to comment on this. Unfortunately, the known proof (as given in [P] and [K]) does not explain this structure and involves complicated recursions. On the other hand, Conway and Sloane [CS, §13] have given a heuristic explanation of the formula. In this paper, we will give a simple and conceptual proof of the local density formula, for p 6= 2. The view point taken here is similar to that of our earlier work [GHY], and the proof is based on the observation that there exists a smooth affine group scheme G over Zp with generic fiber AutQp(L,Q), which satisfies G(Zp) = AutZp(L,Q). This follows from general results of smoothening [BLR], as we explain in Section 3. For the purpose of obtaining an explicit formula, it is necessary to have an explicit construction of G. The main contribution of this paper is to give such an explicit construction of G (in Section 5), and to determine its special fiber (in Section 6). Finally, by comparing ωld and the canonical volume form ωcan of G, we obtain the explicit formula for the local density in Section 7. The smooth group schemes constructed in this paper should also be of independent interest." @default.
- W2076752446 created "2016-06-24" @default.
- W2076752446 creator A5079009728 @default.
- W2076752446 creator A5079015066 @default.
- W2076752446 date "2000-12-15" @default.
- W2076752446 modified "2023-09-23" @default.
- W2076752446 title "Group schemes and local densities" @default.
- W2076752446 cites W1558356405 @default.
- W2076752446 cites W1584561919 @default.
- W2076752446 cites W1590969621 @default.
- W2076752446 cites W1985111873 @default.
- W2076752446 cites W2006403544 @default.
- W2076752446 cites W2034737772 @default.
- W2076752446 cites W2036249456 @default.
- W2076752446 cites W2065983788 @default.
- W2076752446 cites W2071439771 @default.
- W2076752446 cites W2104540562 @default.
- W2076752446 cites W2329313788 @default.
- W2076752446 cites W2583379932 @default.
- W2076752446 cites W37622074 @default.
- W2076752446 cites W4206336137 @default.
- W2076752446 cites W4233683003 @default.
- W2076752446 cites W4234505739 @default.
- W2076752446 cites W4248111367 @default.
- W2076752446 cites W4248269519 @default.
- W2076752446 cites W564943434 @default.
- W2076752446 doi "https://doi.org/10.1215/s0012-7094-00-10535-2" @default.
- W2076752446 hasPublicationYear "2000" @default.
- W2076752446 type Work @default.
- W2076752446 sameAs 2076752446 @default.
- W2076752446 citedByCount "49" @default.
- W2076752446 countsByYear W20767524462012 @default.
- W2076752446 countsByYear W20767524462013 @default.
- W2076752446 countsByYear W20767524462014 @default.
- W2076752446 countsByYear W20767524462015 @default.
- W2076752446 countsByYear W20767524462016 @default.
- W2076752446 countsByYear W20767524462017 @default.
- W2076752446 countsByYear W20767524462018 @default.
- W2076752446 countsByYear W20767524462019 @default.
- W2076752446 countsByYear W20767524462020 @default.
- W2076752446 countsByYear W20767524462021 @default.
- W2076752446 countsByYear W20767524462023 @default.
- W2076752446 crossrefType "journal-article" @default.
- W2076752446 hasAuthorship W2076752446A5079009728 @default.
- W2076752446 hasAuthorship W2076752446A5079015066 @default.
- W2076752446 hasConcept C121332964 @default.
- W2076752446 hasConcept C202444582 @default.
- W2076752446 hasConcept C2781311116 @default.
- W2076752446 hasConcept C33923547 @default.
- W2076752446 hasConcept C62520636 @default.
- W2076752446 hasConceptScore W2076752446C121332964 @default.
- W2076752446 hasConceptScore W2076752446C202444582 @default.
- W2076752446 hasConceptScore W2076752446C2781311116 @default.
- W2076752446 hasConceptScore W2076752446C33923547 @default.
- W2076752446 hasConceptScore W2076752446C62520636 @default.
- W2076752446 hasIssue "3" @default.
- W2076752446 hasLocation W20767524461 @default.
- W2076752446 hasOpenAccess W2076752446 @default.
- W2076752446 hasPrimaryLocation W20767524461 @default.
- W2076752446 hasRelatedWork W1557945163 @default.
- W2076752446 hasRelatedWork W1985218657 @default.
- W2076752446 hasRelatedWork W2023661790 @default.
- W2076752446 hasRelatedWork W2063684714 @default.
- W2076752446 hasRelatedWork W2096753949 @default.
- W2076752446 hasRelatedWork W2742285599 @default.
- W2076752446 hasRelatedWork W2963341196 @default.
- W2076752446 hasRelatedWork W3106133691 @default.
- W2076752446 hasRelatedWork W3124205579 @default.
- W2076752446 hasRelatedWork W4249580765 @default.
- W2076752446 hasVolume "105" @default.
- W2076752446 isParatext "false" @default.
- W2076752446 isRetracted "false" @default.
- W2076752446 magId "2076752446" @default.
- W2076752446 workType "article" @default.