Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076769467> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2076769467 endingPage "1166" @default.
- W2076769467 startingPage "1156" @default.
- W2076769467 abstract "Short term load forecasting (STLF) is an essential tool for efficient power system planning and operation. We propose in this paper the use of Bayesian techniques in order to design an optimal neural network based model for electric load forecasting. The Bayesian approach to modelling offers significant advantages over classical neural network (NN) learning methods. Among others, one can cite the automatic tuning of regularization coefficients, the selection of the most important input variables, the derivation of an uncertainty interval on the model output and the possibility to perform a comparison of different models and, therefore, select the optimal model. The proposed approach is applied to real load data." @default.
- W2076769467 created "2016-06-24" @default.
- W2076769467 creator A5023405346 @default.
- W2076769467 creator A5030697722 @default.
- W2076769467 creator A5066906897 @default.
- W2076769467 creator A5077402261 @default.
- W2076769467 date "2008-05-01" @default.
- W2076769467 modified "2023-10-18" @default.
- W2076769467 title "Bayesian neural network approach to short time load forecasting" @default.
- W2076769467 cites W1517886692 @default.
- W2076769467 cites W1586335931 @default.
- W2076769467 cites W1995139569 @default.
- W2076769467 cites W2025130480 @default.
- W2076769467 cites W2104504458 @default.
- W2076769467 cites W2111051539 @default.
- W2076769467 cites W2137983211 @default.
- W2076769467 cites W2142105298 @default.
- W2076769467 cites W2145085734 @default.
- W2076769467 cites W2151767444 @default.
- W2076769467 cites W4253226372 @default.
- W2076769467 doi "https://doi.org/10.1016/j.enconman.2007.09.009" @default.
- W2076769467 hasPublicationYear "2008" @default.
- W2076769467 type Work @default.
- W2076769467 sameAs 2076769467 @default.
- W2076769467 citedByCount "163" @default.
- W2076769467 countsByYear W20767694672012 @default.
- W2076769467 countsByYear W20767694672013 @default.
- W2076769467 countsByYear W20767694672014 @default.
- W2076769467 countsByYear W20767694672015 @default.
- W2076769467 countsByYear W20767694672016 @default.
- W2076769467 countsByYear W20767694672017 @default.
- W2076769467 countsByYear W20767694672018 @default.
- W2076769467 countsByYear W20767694672019 @default.
- W2076769467 countsByYear W20767694672020 @default.
- W2076769467 countsByYear W20767694672021 @default.
- W2076769467 countsByYear W20767694672022 @default.
- W2076769467 countsByYear W20767694672023 @default.
- W2076769467 crossrefType "journal-article" @default.
- W2076769467 hasAuthorship W2076769467A5023405346 @default.
- W2076769467 hasAuthorship W2076769467A5030697722 @default.
- W2076769467 hasAuthorship W2076769467A5066906897 @default.
- W2076769467 hasAuthorship W2076769467A5077402261 @default.
- W2076769467 hasConcept C107673813 @default.
- W2076769467 hasConcept C119599485 @default.
- W2076769467 hasConcept C119857082 @default.
- W2076769467 hasConcept C121332964 @default.
- W2076769467 hasConcept C127413603 @default.
- W2076769467 hasConcept C154945302 @default.
- W2076769467 hasConcept C160234255 @default.
- W2076769467 hasConcept C163258240 @default.
- W2076769467 hasConcept C165801399 @default.
- W2076769467 hasConcept C2776135515 @default.
- W2076769467 hasConcept C41008148 @default.
- W2076769467 hasConcept C50644808 @default.
- W2076769467 hasConcept C62520636 @default.
- W2076769467 hasConcept C71983512 @default.
- W2076769467 hasConcept C77715397 @default.
- W2076769467 hasConcept C89227174 @default.
- W2076769467 hasConceptScore W2076769467C107673813 @default.
- W2076769467 hasConceptScore W2076769467C119599485 @default.
- W2076769467 hasConceptScore W2076769467C119857082 @default.
- W2076769467 hasConceptScore W2076769467C121332964 @default.
- W2076769467 hasConceptScore W2076769467C127413603 @default.
- W2076769467 hasConceptScore W2076769467C154945302 @default.
- W2076769467 hasConceptScore W2076769467C160234255 @default.
- W2076769467 hasConceptScore W2076769467C163258240 @default.
- W2076769467 hasConceptScore W2076769467C165801399 @default.
- W2076769467 hasConceptScore W2076769467C2776135515 @default.
- W2076769467 hasConceptScore W2076769467C41008148 @default.
- W2076769467 hasConceptScore W2076769467C50644808 @default.
- W2076769467 hasConceptScore W2076769467C62520636 @default.
- W2076769467 hasConceptScore W2076769467C71983512 @default.
- W2076769467 hasConceptScore W2076769467C77715397 @default.
- W2076769467 hasConceptScore W2076769467C89227174 @default.
- W2076769467 hasIssue "5" @default.
- W2076769467 hasLocation W20767694671 @default.
- W2076769467 hasLocation W20767694672 @default.
- W2076769467 hasLocation W20767694673 @default.
- W2076769467 hasOpenAccess W2076769467 @default.
- W2076769467 hasPrimaryLocation W20767694671 @default.
- W2076769467 hasRelatedWork W2032094637 @default.
- W2076769467 hasRelatedWork W2380260214 @default.
- W2076769467 hasRelatedWork W2407375987 @default.
- W2076769467 hasRelatedWork W2607690625 @default.
- W2076769467 hasRelatedWork W2950975704 @default.
- W2076769467 hasRelatedWork W2978027774 @default.
- W2076769467 hasRelatedWork W3214042144 @default.
- W2076769467 hasRelatedWork W4225603608 @default.
- W2076769467 hasRelatedWork W4281746790 @default.
- W2076769467 hasRelatedWork W1919985504 @default.
- W2076769467 hasVolume "49" @default.
- W2076769467 isParatext "false" @default.
- W2076769467 isRetracted "false" @default.
- W2076769467 magId "2076769467" @default.
- W2076769467 workType "article" @default.