Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076793904> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2076793904 endingPage "108" @default.
- W2076793904 startingPage "101" @default.
- W2076793904 abstract "We present, in this paper, an algorithm which integrates flow control and dynamic load balancing in order to improve the performance and stability of Time Warp. The algorithm is intended for use in a distributed memory environment such as a cluster of workstations connected by a high speed switch. Our flow control algorithm makes use of stochastic learning automata and operates in the fashion of the leaky-bucket flow control algorithm used in computer networks. It regulates the flow of messages between processors continuously throughout the course of the simulation, while the dynamic load balancing algorithm is invoked only when a load imbalance is detected. Both algorithms make use of a space-time product metric and collect the requisite information via a snapshot-based GVT algorithm.We compare the performance of the flow control algorithm, the dynamic load balancing algorithm and the integrated algorithm with that of a simulation without any of these controls. We simulated large shuffle ring networks with and without hot spots and a PCS network on an SGI Origin 2000 system.Our results indicate that the flow control scheme alone succeeds in greatly reducing the number and length of rollbacks as well as the number of anti-messages, thereby increasing the number of non-rolled back messages processed per second. It results in a large reduction in the amount of memory used and outperforms the dynamic load balancing algorithm for these measures. The integrated scheme produces even better results for all of these measures and results in reduced execution times as well." @default.
- W2076793904 created "2016-06-24" @default.
- W2076793904 creator A5045603103 @default.
- W2076793904 creator A5088903426 @default.
- W2076793904 date "1999-05-01" @default.
- W2076793904 modified "2023-09-28" @default.
- W2076793904 title "On learning algorithms and balancing loads in Time Warp" @default.
- W2076793904 cites W10389683 @default.
- W2076793904 cites W1577771611 @default.
- W2076793904 cites W1895905027 @default.
- W2076793904 cites W2006625110 @default.
- W2076793904 cites W2026782279 @default.
- W2076793904 cites W2064018461 @default.
- W2076793904 cites W2080826833 @default.
- W2076793904 cites W2092119269 @default.
- W2076793904 cites W2098553601 @default.
- W2076793904 cites W2130436064 @default.
- W2076793904 cites W2139378346 @default.
- W2076793904 cites W2154677674 @default.
- W2076793904 cites W2296636214 @default.
- W2076793904 doi "https://doi.org/10.5555/301429.301463" @default.
- W2076793904 hasPublicationYear "1999" @default.
- W2076793904 type Work @default.
- W2076793904 sameAs 2076793904 @default.
- W2076793904 citedByCount "17" @default.
- W2076793904 countsByYear W20767939042012 @default.
- W2076793904 countsByYear W20767939042014 @default.
- W2076793904 countsByYear W20767939042015 @default.
- W2076793904 countsByYear W20767939042016 @default.
- W2076793904 crossrefType "proceedings-article" @default.
- W2076793904 hasAuthorship W2076793904A5045603103 @default.
- W2076793904 hasAuthorship W2076793904A5088903426 @default.
- W2076793904 hasConcept C106516650 @default.
- W2076793904 hasConcept C111919701 @default.
- W2076793904 hasConcept C11413529 @default.
- W2076793904 hasConcept C120314980 @default.
- W2076793904 hasConcept C138959212 @default.
- W2076793904 hasConcept C173608175 @default.
- W2076793904 hasConcept C187691185 @default.
- W2076793904 hasConcept C2524010 @default.
- W2076793904 hasConcept C33923547 @default.
- W2076793904 hasConcept C41008148 @default.
- W2076793904 hasConcept C55282118 @default.
- W2076793904 hasConcept C67953723 @default.
- W2076793904 hasConcept C79403827 @default.
- W2076793904 hasConceptScore W2076793904C106516650 @default.
- W2076793904 hasConceptScore W2076793904C111919701 @default.
- W2076793904 hasConceptScore W2076793904C11413529 @default.
- W2076793904 hasConceptScore W2076793904C120314980 @default.
- W2076793904 hasConceptScore W2076793904C138959212 @default.
- W2076793904 hasConceptScore W2076793904C173608175 @default.
- W2076793904 hasConceptScore W2076793904C187691185 @default.
- W2076793904 hasConceptScore W2076793904C2524010 @default.
- W2076793904 hasConceptScore W2076793904C33923547 @default.
- W2076793904 hasConceptScore W2076793904C41008148 @default.
- W2076793904 hasConceptScore W2076793904C55282118 @default.
- W2076793904 hasConceptScore W2076793904C67953723 @default.
- W2076793904 hasConceptScore W2076793904C79403827 @default.
- W2076793904 hasLocation W20767939041 @default.
- W2076793904 hasOpenAccess W2076793904 @default.
- W2076793904 hasPrimaryLocation W20767939041 @default.
- W2076793904 hasRelatedWork W1648352091 @default.
- W2076793904 hasRelatedWork W1991350044 @default.
- W2076793904 hasRelatedWork W2090777255 @default.
- W2076793904 hasRelatedWork W2092119269 @default.
- W2076793904 hasRelatedWork W2098242472 @default.
- W2076793904 hasRelatedWork W2098553601 @default.
- W2076793904 hasRelatedWork W2104663822 @default.
- W2076793904 hasRelatedWork W2111665223 @default.
- W2076793904 hasRelatedWork W2115563423 @default.
- W2076793904 hasRelatedWork W2117874242 @default.
- W2076793904 hasRelatedWork W2121735063 @default.
- W2076793904 hasRelatedWork W2123990187 @default.
- W2076793904 hasRelatedWork W2134164560 @default.
- W2076793904 hasRelatedWork W2134476472 @default.
- W2076793904 hasRelatedWork W2139378346 @default.
- W2076793904 hasRelatedWork W2140652616 @default.
- W2076793904 hasRelatedWork W2154010459 @default.
- W2076793904 hasRelatedWork W2154677674 @default.
- W2076793904 hasRelatedWork W2158105918 @default.
- W2076793904 hasRelatedWork W2168076459 @default.
- W2076793904 isParatext "false" @default.
- W2076793904 isRetracted "false" @default.
- W2076793904 magId "2076793904" @default.
- W2076793904 workType "article" @default.