Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076837108> ?p ?o ?g. }
- W2076837108 endingPage "651" @default.
- W2076837108 startingPage "636" @default.
- W2076837108 abstract "Rough sets, especially fuzzy rough sets, are supposedly a powerful mathematical tool to deal with uncertainty in data analysis. This theory has been applied to feature selection, dimensionality reduction, and rule learning. However, it is pointed out that the classical model of fuzzy rough sets is sensitive to noisy information, which is considered as a main source of uncertainty in applications. This disadvantage limits the applicability of fuzzy rough sets. In this paper, we reveal why the classical fuzzy rough set model is sensitive to noise and how noisy samples impose influence on fuzzy rough computation. Based on this discussion, we study the properties of some current fuzzy rough models in dealing with noisy data and introduce several new robust models. The properties of the proposed models are also discussed. Finally, a robust classification algorithm is designed based on fuzzy lower approximations. Some numerical experiments are given to illustrate the effectiveness of the models. The classifiers that are developed with the proposed models achieve good generalization performance." @default.
- W2076837108 created "2016-06-24" @default.
- W2076837108 creator A5024869167 @default.
- W2076837108 creator A5056686459 @default.
- W2076837108 creator A5061917583 @default.
- W2076837108 creator A5076552940 @default.
- W2076837108 creator A5077613124 @default.
- W2076837108 date "2012-08-01" @default.
- W2076837108 modified "2023-10-11" @default.
- W2076837108 title "On Robust Fuzzy Rough Set Models" @default.
- W2076837108 cites W1500895378 @default.
- W2076837108 cites W1510685118 @default.
- W2076837108 cites W1600321904 @default.
- W2076837108 cites W1786569510 @default.
- W2076837108 cites W1975980892 @default.
- W2076837108 cites W1994425726 @default.
- W2076837108 cites W1994550352 @default.
- W2076837108 cites W1994930764 @default.
- W2076837108 cites W1995897489 @default.
- W2076837108 cites W1997362234 @default.
- W2076837108 cites W2010107561 @default.
- W2076837108 cites W2010154271 @default.
- W2076837108 cites W2018786061 @default.
- W2076837108 cites W2021680742 @default.
- W2076837108 cites W2027654459 @default.
- W2076837108 cites W2034841618 @default.
- W2076837108 cites W2038894244 @default.
- W2076837108 cites W2045358009 @default.
- W2076837108 cites W2056784354 @default.
- W2076837108 cites W2073838858 @default.
- W2076837108 cites W2077183117 @default.
- W2076837108 cites W2077812306 @default.
- W2076837108 cites W2084980758 @default.
- W2076837108 cites W2085034065 @default.
- W2076837108 cites W2096393821 @default.
- W2076837108 cites W2097923398 @default.
- W2076837108 cites W2099105442 @default.
- W2076837108 cites W2099167966 @default.
- W2076837108 cites W2103086259 @default.
- W2076837108 cites W2105980173 @default.
- W2076837108 cites W2111011053 @default.
- W2076837108 cites W2112684403 @default.
- W2076837108 cites W2114296159 @default.
- W2076837108 cites W2122471363 @default.
- W2076837108 cites W2124491466 @default.
- W2076837108 cites W2128771953 @default.
- W2076837108 cites W2135017202 @default.
- W2076837108 cites W2137396323 @default.
- W2076837108 cites W2141738323 @default.
- W2076837108 cites W2147435918 @default.
- W2076837108 cites W2153098502 @default.
- W2076837108 cites W2153676086 @default.
- W2076837108 cites W2154887800 @default.
- W2076837108 cites W2157023969 @default.
- W2076837108 cites W2158755163 @default.
- W2076837108 cites W2160050542 @default.
- W2076837108 cites W2160307100 @default.
- W2076837108 cites W2163370485 @default.
- W2076837108 cites W2163921091 @default.
- W2076837108 cites W2165094119 @default.
- W2076837108 cites W2168523997 @default.
- W2076837108 cites W2169807773 @default.
- W2076837108 cites W2170973913 @default.
- W2076837108 cites W3141507694 @default.
- W2076837108 doi "https://doi.org/10.1109/tfuzz.2011.2181180" @default.
- W2076837108 hasPublicationYear "2012" @default.
- W2076837108 type Work @default.
- W2076837108 sameAs 2076837108 @default.
- W2076837108 citedByCount "125" @default.
- W2076837108 countsByYear W20768371082013 @default.
- W2076837108 countsByYear W20768371082014 @default.
- W2076837108 countsByYear W20768371082015 @default.
- W2076837108 countsByYear W20768371082016 @default.
- W2076837108 countsByYear W20768371082017 @default.
- W2076837108 countsByYear W20768371082018 @default.
- W2076837108 countsByYear W20768371082019 @default.
- W2076837108 countsByYear W20768371082020 @default.
- W2076837108 countsByYear W20768371082021 @default.
- W2076837108 countsByYear W20768371082022 @default.
- W2076837108 countsByYear W20768371082023 @default.
- W2076837108 crossrefType "journal-article" @default.
- W2076837108 hasAuthorship W2076837108A5024869167 @default.
- W2076837108 hasAuthorship W2076837108A5056686459 @default.
- W2076837108 hasAuthorship W2076837108A5061917583 @default.
- W2076837108 hasAuthorship W2076837108A5076552940 @default.
- W2076837108 hasAuthorship W2076837108A5077613124 @default.
- W2076837108 hasConcept C111012933 @default.
- W2076837108 hasConcept C111030470 @default.
- W2076837108 hasConcept C11413529 @default.
- W2076837108 hasConcept C119857082 @default.
- W2076837108 hasConcept C124101348 @default.
- W2076837108 hasConcept C127385683 @default.
- W2076837108 hasConcept C134306372 @default.
- W2076837108 hasConcept C148671577 @default.
- W2076837108 hasConcept C154945302 @default.
- W2076837108 hasConcept C170260401 @default.
- W2076837108 hasConcept C177148314 @default.
- W2076837108 hasConcept C1883856 @default.