Matches in SemOpenAlex for { <https://semopenalex.org/work/W2076853628> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2076853628 abstract "Smart electro-optical systems of the future will need to be adaptive and robust to function in different environments. In 1989 the authors reported how atmospheric losses in contrast, resolution, edge detail, and signal to noise adversely affect image-based classification using linear matched filters and how the atmosphere alters features such as gray-level moments. They also showed that the performance changes with atmospheric path radiance and transmittance are predictable, however, and that some effects can be mitigated automatically by including the atmosphere as a separate training class. This paper extends that analysis to atmospheric effects on pattern recognition by neural network classifiers. The neural net pattern recognition methods considered here are single- and multi-layer perceptron networks trained with back-propagation. Image classifier performance under different atmospheric propagation conditions is shown to be easily predicted for simple single-layer neural nets. This leads to a specific training strategy to minimize the impact of propagation losses by including the atmosphere as a separate training class. This same strategy also improves the performance of multi-layer neural networks. Examples are given of classification of a vehicle partly obscured by highly scattering white smoke and highly absorptive black smoke. Other methods are being investigated that affect the performance and training convergence properties of neural net pattern recognition in atmospheres.© (1991) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only." @default.
- W2076853628 created "2016-06-24" @default.
- W2076853628 creator A5018614682 @default.
- W2076853628 creator A5030806354 @default.
- W2076853628 date "1991-07-01" @default.
- W2076853628 modified "2023-09-23" @default.
- W2076853628 title "<title>Atmospheric propagation effects on pattern recognition by neural networks</title>" @default.
- W2076853628 cites W1561357907 @default.
- W2076853628 cites W2766736793 @default.
- W2076853628 doi "https://doi.org/10.1117/12.45774" @default.
- W2076853628 hasPublicationYear "1991" @default.
- W2076853628 type Work @default.
- W2076853628 sameAs 2076853628 @default.
- W2076853628 citedByCount "0" @default.
- W2076853628 crossrefType "proceedings-article" @default.
- W2076853628 hasAuthorship W2076853628A5018614682 @default.
- W2076853628 hasAuthorship W2076853628A5030806354 @default.
- W2076853628 hasConcept C127313418 @default.
- W2076853628 hasConcept C153180895 @default.
- W2076853628 hasConcept C154945302 @default.
- W2076853628 hasConcept C155032097 @default.
- W2076853628 hasConcept C179717631 @default.
- W2076853628 hasConcept C23690007 @default.
- W2076853628 hasConcept C41008148 @default.
- W2076853628 hasConcept C50644808 @default.
- W2076853628 hasConcept C60908668 @default.
- W2076853628 hasConcept C62649853 @default.
- W2076853628 hasConceptScore W2076853628C127313418 @default.
- W2076853628 hasConceptScore W2076853628C153180895 @default.
- W2076853628 hasConceptScore W2076853628C154945302 @default.
- W2076853628 hasConceptScore W2076853628C155032097 @default.
- W2076853628 hasConceptScore W2076853628C179717631 @default.
- W2076853628 hasConceptScore W2076853628C23690007 @default.
- W2076853628 hasConceptScore W2076853628C41008148 @default.
- W2076853628 hasConceptScore W2076853628C50644808 @default.
- W2076853628 hasConceptScore W2076853628C60908668 @default.
- W2076853628 hasConceptScore W2076853628C62649853 @default.
- W2076853628 hasLocation W20768536281 @default.
- W2076853628 hasOpenAccess W2076853628 @default.
- W2076853628 hasPrimaryLocation W20768536281 @default.
- W2076853628 hasRelatedWork W1488680117 @default.
- W2076853628 hasRelatedWork W1501819639 @default.
- W2076853628 hasRelatedWork W1514261972 @default.
- W2076853628 hasRelatedWork W1979583680 @default.
- W2076853628 hasRelatedWork W1990688133 @default.
- W2076853628 hasRelatedWork W1999586181 @default.
- W2076853628 hasRelatedWork W2045017715 @default.
- W2076853628 hasRelatedWork W2138302276 @default.
- W2076853628 hasRelatedWork W2155160103 @default.
- W2076853628 hasRelatedWork W2895491352 @default.
- W2076853628 hasRelatedWork W2973196766 @default.
- W2076853628 hasRelatedWork W2997886911 @default.
- W2076853628 hasRelatedWork W3023183603 @default.
- W2076853628 hasRelatedWork W3034269658 @default.
- W2076853628 hasRelatedWork W3080415924 @default.
- W2076853628 hasRelatedWork W3128114774 @default.
- W2076853628 hasRelatedWork W3135320274 @default.
- W2076853628 hasRelatedWork W3146083744 @default.
- W2076853628 hasRelatedWork W3192983523 @default.
- W2076853628 hasRelatedWork W1968629935 @default.
- W2076853628 isParatext "false" @default.
- W2076853628 isRetracted "false" @default.
- W2076853628 magId "2076853628" @default.
- W2076853628 workType "article" @default.